分布式网络选举算法与最小生成树算法详解
1. 选举算法概述
在分布式网络中,选举算法的目标是从众多进程里选出一个作为领导者。领导者的作用多样,比如组织分布式任务、充当网络生成树的根节点,或者发起集中式算法。选举算法具有去中心化的特点,任何非空进程集合都能作为发起者,并且要求所有进程使用相同的本地算法。同时,进程的 ID 是唯一的,且来自一个全序集合,这对构建总能终止的选举算法至关重要。
2. 环形拓扑的选举算法
2.1 Chang - Roberts 算法
Chang - Roberts 算法适用于有向环网络。在算法开始时,发起者会向环中的下一个进程发送带有自身 ID 的消息。当活跃进程 p 收到带有 ID q 的消息时,会出现以下三种情况:
- 若 q < p,p 会丢弃该消息。
- 若 q > p,p 变为被动状态,并传递该消息。
- 若 q = p,p 成为领导者。
此算法的核心思想是,只有 ID 最大的消息能完成环的遍历,其他消息在遇到 ID 最大的发起者时会停止传播。在一个所有进程都是发起者的有向环中,若环为逆时针方向,选举进程 N - 1 为领导者需要 1/2N(N + 1) 条消息;若为顺时针方向,则只需 2N - 1 条消息。该算法的最坏情况消息复杂度为 O(N²),平均情况消息复杂度为 O(N log N)。
2.2 Franklin 算法
Franklin 算法适用于无向环网络,它改进了 Chang - Roberts 算法的最坏情况消息复杂度。在选举轮次中,活跃进程 p 会将自身 ID 与两侧最近活跃邻居的 ID 进行比较:
订阅专栏 解锁全文
47

被折叠的 条评论
为什么被折叠?



