6、分布式网络选举算法与最小生成树算法详解

分布式网络选举算法与最小生成树算法详解

1. 选举算法概述

在分布式网络中,选举算法的目标是从众多进程里选出一个作为领导者。领导者的作用多样,比如组织分布式任务、充当网络生成树的根节点,或者发起集中式算法。选举算法具有去中心化的特点,任何非空进程集合都能作为发起者,并且要求所有进程使用相同的本地算法。同时,进程的 ID 是唯一的,且来自一个全序集合,这对构建总能终止的选举算法至关重要。

2. 环形拓扑的选举算法
2.1 Chang - Roberts 算法

Chang - Roberts 算法适用于有向环网络。在算法开始时,发起者会向环中的下一个进程发送带有自身 ID 的消息。当活跃进程 p 收到带有 ID q 的消息时,会出现以下三种情况:
- 若 q < p,p 会丢弃该消息。
- 若 q > p,p 变为被动状态,并传递该消息。
- 若 q = p,p 成为领导者。

此算法的核心思想是,只有 ID 最大的消息能完成环的遍历,其他消息在遇到 ID 最大的发起者时会停止传播。在一个所有进程都是发起者的有向环中,若环为逆时针方向,选举进程 N - 1 为领导者需要 1/2N(N + 1) 条消息;若为顺时针方向,则只需 2N - 1 条消息。该算法的最坏情况消息复杂度为 O(N²),平均情况消息复杂度为 O(N log N)。

2.2 Franklin 算法

Franklin 算法适用于无向环网络,它改进了 Chang - Roberts 算法的最坏情况消息复杂度。在选举轮次中,活跃进程 p 会将自身 ID 与两侧最近活跃邻居的 ID 进行比较:

内容概要:本文围绕基于机器学习的网络入侵检测展开研究,提出采用随机森林(Random Forest, RF)模型实现对网络流量中异常行为的高效识别。系统以KDD 99公开数据集为基础,通过数据预处理、特征提取(如包长、协议类型、源IP、目标端口等)、模型训练优化等步骤,构建随机森林分类模型。研究强调该算法在检测准确率、泛化能力及抗噪性方面的优势,测试结果显示模型准确率达98.65%,具备低误报率和高实时性。系统还集成Flask框架Vue技术实现前后端交互及可视化展示,支持攻击类型统计、地理分布分析等功能,并通过单元测试、性能测试和安全测试验证系统稳定性可靠性。; 适合人群:具备一定机器学习基础和Python编程能力的本科及以上学生、网络安全研究人员或初级开发人员。; 使用场景及目标:①应用于高校科研或毕业设计,深入理解机器学习在网络入侵检测中的实际应用;②为中小型组织提供低成本、高效的入侵检测解决方案原型;③学习如何将机器学习模型Web系统集成,实现从数据处理到可视化展示的完整流程。; 阅读建议:建议结合代码实践,重点关注数据预处理、特征工程随机森林模型调优部分,同时可拓展对比其他算法(如SVM、神经网络)在相同数据集上的表现,以深化对模型选型的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值