- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
目标
根据鞋子的品牌logo判断鞋子所属的品牌
具体实现
(一)环境
语言环境:Python 3.10
编 译 器: PyCharm
框 架: Tensorflow 2.10.0
(二)具体步骤
1.查询tf版本及使用GPU
import pathlib
import matplotlib.pyplot as plt
import PIL.Image
import tensorflow as tf
from tensorflow.keras import models, layers
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
print(tf.__version__)
gpus = tf.config.list_physical_devices("GPU")
print(gpus)
if gpus:
gpu0 = gpus[0] # 如果有多个GPU,仅使用0号GPU
tf.config.experimental.set_memory_growth(gpu0, True) # 设置GPU显存按需使用
tf.config.set_visible_devices([gpu0], "GPU") # 指定运行时GPU
2.10.0
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
2.导入数据
本次数据放在根目录的datasets/shoes文件夹下:
# 导入数据
data_dir = "./datasets/shoes/"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*/*.jpg')))
print("图片总数为:", image_count)
nike_shoes = list(data_dir.glob('train/nike/*.jpg'))
print("NIKE品牌鞋子图片数量为:", len(nike_shoes))
adidas_shoes = list(data_dir.glob('train/adidas/*.jpg'))
print("ADIDAS品牌鞋子图片数量为:", len(adidas_shoes))
shoes = PIL.Image.open(nike_shoes[0])
shoes.show()
shoes = PIL.Image.open(adidas_shoes[0])
shoes.show()
图片总数为: 578
NIKE品牌鞋子图片数量为: 251
ADIDAS品牌鞋子图片数量为: 251
3.加载数据
# 加载数据
batch_size = 32
image_height = 224
image_width = 224
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
directory="./datasets/shoes/train/",
seed=123,
image_size=(image_height, image_width),
batch_size=batch_size
)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
directory='./datasets/shoes/test/',
seed=123,
image_size=(image_height, image_width),
batch_size=batch_size
)
class_names = train_ds.class_names
print(class_names)
plt.figure(figsize=(20, 10))
for images, labels in train_ds.take(1):
for i in range(20):
ax = plt.subplot(5, 10, i + 1)
plt.imshow(images[i].numpy().astype('uint8'))
plt.title(class_names[labels[i]])
plt.axis("off")
plt.show()
Found 502 files belonging to 2 classes.
Found 76 files belonging to 2 classes.
['adidas', 'nike']
4.检查数据
# 检查数据
for image_batch, labels_batch in train_ds:
print(image_batch.shape)
print(labels_batch.shape)
break
(32, 224, 224, 3)
(32,)
5.配置数据集
# 配置数据集
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
6.构建CNN网络
CNN的输入是张量形式的(长、宽、颜色通道 ),例如(224,224,3)。看下面的图输入层要求的长,宽都是224,彩色图片是