- 博客(48)
- 资源 (15)
- 收藏
- 关注
原创 第2天:认识LSTM
本文介绍了LSTM(长短期记忆网络)的核心原理与实现。LSTM通过遗忘门、输入门和输出门三个关键组件有效解决了传统RNN的梯度消失问题,能够处理长序列数据。文章详细解析了LSTM的门控机制和工作流程,并提供了基于PyTorch的LSTM网络实现代码,包括参数设置和前向传播过程。最后列举了LSTM在自然语言处理、时间序列预测等领域的典型应用。该内容来自365天深度学习训练营的学习记录,使用Python 3.10和PyCharm环境开发。
2025-06-05 12:43:09
1038
原创 第1天:认识RNN及RNN初步实验(预测下一个数字)
循环神经网络(RNN)是一种专门处理序列数据的神经网络,其核心特点是具有"记忆"功能,能够保留历史信息用于当前计算。RNN通过循环连接和共享权重机制,有效处理自然语言、时间序列等数据。相较于传统前馈神经网络,RNN能捕捉序列的时序特征和上下文依赖关系。然而标准RNN存在梯度消失和长程依赖问题,因此发展出LSTM和GRU等改进结构。本文还通过Python代码展示了RNN的简单实现,包括数据准备、模型定义和训练过程。RNN及其变体在机器翻译、语音识别等序列任务中具有广泛应用。
2025-06-02 11:27:52
1118
原创 第J9周:Inception v3算法实战与解析
本文介绍了基于Inception V3模型的天气识别实现,属于365天深度学习训练营的学习项目。Inception V3是Google提出的高效CNN架构,通过卷积分解、并行模块和批归一化等技术优化计算效率和精度。文章详细解析了Inception V3的核心创新点,包括模块化设计、非对称卷积分解、辅助分类器等,并提供了使用PyTorch实现的具体代码框架,包含三种Inception模块的定义。该项目目标是利用该模型对天气图像进行分类识别,展示了深度学习在计算机视觉领域的实际应用。
2025-05-28 12:07:18
895
原创 第J8周:Inception v1算法实战与解析
文章主要介绍了1×1卷积运算的原理及其在Inception v1模型中的应用,并展示了如何利用该模型进行猴痘病识别。1×1卷积通过降低通道数来减少计算量,同时保持空间维度不变,适用于特征重组和模型压缩。文章详细解释了1×1卷积的数学原理,并通过代码实现了Inception v1模型,包括其多个分支结构和卷积层的组合。最终,模型通过全连接层进行分类,适用于图像识别任务。
2025-05-21 03:19:37
981
原创 第J7周:ResNeXt解析
本文是365天深度学习训练营中的学习记录博客,作者为K同学。文章详细介绍了如何使用Python 3.10和TensorFlow框架实现深度学习模型,特别是ResNeXt残差网络的构建。具体步骤包括环境配置、GPU内存设置、中文字体支持、分组卷积块的实现以及ResNeXt残差块的构建。代码中使用了TensorFlow的Keras API,涵盖了卷积层、批归一化、激活函数、残差连接等关键操作。通过堆叠多个残差块,构建了一个完整的深度学习模型,并提供了详细的代码实现和注释。
2025-05-09 13:51:07
592
原创 第J2周:ResNet50V2算法实现02(Tensorflow优化版)
使用tensorflow实现ResNetV50V2的网络结构。本次根据第一层的细节手动硬编码,没有任何的优化,只为了更好的理解细节。是根据网络结构一行一行写出来的。
2025-03-17 12:31:57
395
原创 第J2周:ResNet50V2算法实现01(Tensorflow硬编码版)
使用tensorflow实现ResNetV50V2的网络结构。本次根据第一层的细节手动硬编码,没有任何的优化,只为了更好的理解细节。结果不是很理想,网络结构应该还有瑕疵。后续优化代码解决拟合问题。
2025-03-12 23:04:28
481
原创 第P7周-Pytorch实现马铃薯病害识别(VGG16复现)
马铃薯病害数据集,该数据集包含表现出各种疾病的马铃薯植物的高分辨率图像,包括和。它旨在帮助开发和测试图像识别模型,以实现准确的疾病检测和分类,从而促进农业诊断的进步。语言环境编 译 器:PyCharm框 架:Pytorch。
2025-01-26 12:43:57
1659
2
原创 第P5周-Pytorch实现运动鞋品牌识别
本次学习对于构建CNN网络中的 nn.BatchNorm2d()做了初步的了解,nn.BatchNorm2d()进行数据的归一化处理,这使得数据在进行Relu之前不会因为数据过大而导致网络性能的不稳定,BatchNorm2d()函数数学原理如下:BatchNorm2d()内部的参数如下:1.num_features:一般输入参数为batch_sizeheight*width,即为其中特征的数量2.eps:分母中添加的一个值,目的是为了计算的稳定性,默认为:1e-5。
2025-01-08 18:36:00
416
原创 第P3周:Pytorch实现天气识别
语言环境:Python 3.10编 译 器: PyCharm框 架: Pytorch 2.5.12. 模型代码3. 预测真实图片:pred.py准确率80%.下载一个大数据集训练一下,数据如下:
2024-12-17 17:27:33
473
原创 第P2周:Pytorch实现CIFAR10彩色图片识别
batch_size=16,epochs=50:有第20轮左右的时候,验证集的确认性基本就没有再提高了。比较漂亮了,再调整batch_size=16和epochs=20,提高了近6个百分点。输出:CUDA is available, will use GPU。可以看到训练集和测试集的差距有点大,不太理想。
2024-12-13 00:17:36
694
2
原创 第P1周:Pytorch实现mnist手写数字识别
# 第一步:设置硬件设备,有GPU就使用GPU,没有就使用GPU device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(device)
2024-12-06 14:24:31
1448
原创 第T8周:Tensorflow实现猫狗识别(1)
# 归一化处理 train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE) val_ds = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE) # cache() ----将数据集缓存到内存当中 加速运行 # shuffle() ----打乱数据 # prefetch() ----预取数据,加速运行 train_ds = train
2024-11-19 10:32:10
750
原创 第T7周:Tensorflow实现咖啡豆识别
VGG-16的网络 有13个卷积层(被5个max-pooling层分割)和3个全连接层(FC),所有卷积层过滤器的大小都是3X3,步长为1,进行padding。5个max-pooling层分别在第2、4、7、10,13卷积层后面。每次进行池化(max-pooling)后,特征图的长宽都缩小一半,但是channel都翻倍了,一直到512。最后三个全连接层大小分别是4096,4096, 1000,我们使用的是咖啡豆识别,根据数据集的类别数量修改最后的分类数量(即从1000改成len(class_names))
2024-11-15 12:55:27
592
原创 第T6周:Tensorflow实现好莱坞明星识别
实际预测会发现结果有很大概率会出错的。其次看模型评估,其实训练的结果是比较差的, val_accuracy最好只有40%左右。如何提高准确率,还需要研究,后续出实践总结。
2024-11-01 18:23:41
302
原创 第T5周:Tensorflow实现运动鞋品牌识别
tf.keras.layers.Dropout( rate, noise_shape=None, seed=None, **kwargs** )使用是防止过拟合,提高模型的泛化能力。过拟合:模型在训练数据中表现优秀,但在测试数据或者新数据中表现糟糕的情况。泛化:就是指模型对于未见过的数据上的表现能力参数:**rate**: 0-1之间的小数,让神经元以一定的概率rate停止工作,提高模型的活化能力。**noise_shape**:这是一个1维整数张量,表示将与输入进行乘法运算的二值dropout
2024-10-19 17:30:53
568
原创 第T4周:TensorFlow实现猴痘识别
1. 数据集的格式可以有多种,可以是numpy数组,文本数据,CSV数据,文件数据等;2. 数据集加速配置,如何更好的利用CPU时间3. 保存模型的要素,结构、权重、配置。仅保存权重并不是模型本身。
2024-10-12 11:30:00
1102
原创 02:图像的基本操作
图像的基本操作。https://docs.opencv.org/4.10.0/dc/d4d/tutorial_py_table_of_contents_gui.html
2024-10-08 16:26:05
174
原创 第T3周:TensorFlow构建CNN网络模型实现天气识别
1.如何检测GPU并使用GPU进行大模型训练与预测2.与之前不一样的数据集的加载与处理方式3.不同的损失函数,池化层函数,学习率和准确率之间有什么关系?需要继续了解4.怎么解决过拟合的问题呢,后续学习研究。5.学习数据增加的方式方法6.每次模型训练完,进行真实图片的预测,应该模型能够保存后直接调用才对,不可能每次使用都需要重新训练一遍。学习模型的保存与加载使用。
2024-10-05 12:30:00
1083
原创 第T2周:TensorFlow实现彩色图片分类(CIFAR10数据集),并实现自己的真实图片分类
1. 熟悉各个模型搭建、训练到预测的流程2. 了解神经网络模型(黑盒子)的细节3. 并不是每次都能预测正确,对于真实图片的预处理,要怎么样提升准确性,后续研究。4. 并不是把epochs提高,准确性就提高,继续研究。
2024-09-28 11:00:00
666
原创 第L4周:机器学习-KNN总结-分类
解释一下:X_pred.shape[0] 就是结果总数30. X_pred.shape的结果是(30, 1),那么shpae[0]就是30.可以看到,30个特征值预测了30个结果。把数据集做切分,按8:2比例切,80%用来训练,20%用来预测。第1个:Sepal.Length(花萼长度),单位是cm。第3个:Petal.Length(花瓣长度),单位是cm。第4个:Petal.Width(花瓣宽度),单位是cm;第2个:Sepal.Width(花萼宽度),单位是cm。标签数据中的0,1,2又代表什么呢?
2024-09-24 10:29:11
687
原创 第T1周:Tensorflow实现mnist手写数字识别
为啥要调整图片格式呢,导入数据的时候,图片的形状是这样的(60000, 28,28)意思是有6000张28X28像素的图片,现在要调整成(60000, 28, 28, 1)的形状,为啥要调整形状?因为神经网络使用的数量(图像表)它的形状应该是(样本数、宽、高、通道数),对应到(60000, 28, 28)就是样本数60000张图片,宽28,高28都有了,差一个通道数。如果(60000,28, 28)中的60000是指数量的话,剩下的28 * 28显然。我的机器明明有显卡,但是显示0,不管了,后面再研究。
2024-09-16 12:27:10
1208
原创 第L6周:机器学习-随机森林(RF)
Bagging在做预测时,对于分类任务,使用简单的投票法。若分类预测时出现两个类票数一样时,则随机选择一个。其是由很多决策树构成的,不同决策树之间没有关联。当我们进行分类任务时,新的输入样本进入,就让森林中的每一棵决策树分别进行判断和分类,每个决策树会得到一个自己的分类结果,决策树的分类结果中哪一个分类最多,那么随机森林就会把这个结果当做最终的结果。个人理解:就是通过不维度去使用决策树去分类,每个决策树都有自己的分类结果 ,再把所有的结果进行统计,得出分类最多的那个分类就是预测的最终结果。
2024-09-12 12:06:32
1427
原创 第L5周:机器学习:决策树(回归模型)
1. 决策树算法是一种在机器学习和数据挖掘领域广泛应用的强大工具,它模拟人类决策过程,通过对数据集进行逐步的分析和判定,最终生成一颗树状结构,每个节点代表一个决策或一个特征。决策树的核心思想是通过一系列问题将数据集划分成不同的类别或值,从而实现对未知数据的预测和分类。这一算法的开发灵感源自人类在解决问题时的思考方式,我们往往通过一系列简单而直观的问题逐步缩小解决方案的范围。决策树的构建过程也是类似的,它通过对数据的特征进行提问,选择最能区分不同类别的特征,逐渐生成树状结构,最终形成一个可用于预测的模型。
2024-09-04 13:10:57
381
原创 第L5周:机器学习:决策树(分类模型)
1. 决策树算法是一种在机器学习和数据挖掘领域广泛应用的强大工具,它模拟人类决策过程,通过对数据集进行逐步的分析和判定,最终生成一颗树状结构,每个节点代表一个决策或一个特征。决策树的核心思想是通过一系列问题将数据集划分成不同的类别或值,从而实现对未知数据的预测和分类。这一算法的开发灵感源自人类在解决问题时的思考方式,我们往往通过一系列简单而直观的问题逐步缩小解决方案的范围。决策树的构建过程也是类似的,它通过对数据的特征进行提问,选择最能区分不同类别的特征,逐渐生成树状结构,最终形成一个可用于预测的模型。
2024-09-04 12:50:53
974
原创 第L4周:机器学习-K-邻近算法模型(KNN)
那么,在分析一个人时,我们不妨观察和他最亲密的几个人。同理的,在判定一个未知事物时,可以观察离它最近的几个样本,这就是KNN(k-近邻)算法。在KNN中存在两个重要问题,一个是K的取值问题,一个是距离计算问题,这里先不做讨论,仅仅引入KNN这个概念,明白它是一个什么东西,在后面文章中我们再对这两个问题进行深入讨论。蓝色方块与红色三角形为训练集中的实例,绿色小圆是新输入的实例,现在在现有实例中取K个离小绿圆最近实例用于判断其类别。K-近邻算法,即是给定一个训练数据集,输入一个新的实例,
2024-09-03 20:46:25
729
Windows Live Installer
2007-11-16
BOINC.EXE
2007-10-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人