scrapy框架

一、什么是scrapy框架?

  把一个网页里面所有的标签都抓取到
  作用:帮我们提供一个可扩展,功能齐全的爬虫框架
  Scrapy是爬虫界的Django。

Scrapy运行流程大概如下:

  1. 引擎从调度器中取出一个链接(URL)用于接下来的抓取
  2. 引擎把URL封装成一个请求(Request)传给下载器
  3. 下载器把资源下载下来,并封装成应答包(Response)
  4. 爬虫解析Response
  5. 解析出实体(Item),则交给实体管道进行进一步的处理
  6. 解析出的是链接(URL),则把URL交给调度器等待抓取

Scrapy主要包括了以下组件:

  • 引擎(Scrapy)

  用来处理整个系统的数据流处理, 触发事务(框架核心)

  • 调度器(Scheduler)

  用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址

  • 下载器(Downloader)

  用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)

  • 爬虫(Spiders)

  爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面

  • 项目管道(Pipeline)

  负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。

  • 下载器中间件(Downloader Middlewares)

位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。

  • 爬虫中间件(Spider Middlewares)

介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。

  • 调度中间件(Scheduler Middewares)

  介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。

Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构(整体图如下)

 

二、scrapy安装 

Linux下的安装(包括mac)

  pip install scrapy

Windows下的安装

  1.下载twisted 
    http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
  2. 安装wheel 
    pip3 install wheel
  3. 安装twisted 
     进入下载目录,执行 pip3 install Twisted‑18.7.0‑cp36‑cp36m‑win_amd64.whl
  4.安装pywin32
    pip3 install pywin32
  5.安装scrapy 
    pip3 install scrapy 

 三、基本命令

1. scrapy startproject 项目名称

    -  在当前目录中创建一个项目文件(类似于Django)
2.  scrapy genspider [ - t template] <name> <domain>
    -  创建爬虫应用
    如:
       scrapy gensipider  - t basic oldboy oldboy.com
       scrapy gensipider  - t xmlfeed autohome autohome.com.cn
     或者简单直接   scrapy gensipider app名  要爬取的域名
    PS:
       查看所有命令:scrapy gensipider  - l
       查看模板命令:scrapy gensipider  - d 模板名称
3.  scrapy  list
    -  展示爬虫应用列表
4.  scrapy crawl 爬虫应用名称
    -  运行单独爬虫应用

备注:scrapy crawl 应用名称  表示以日志的形式运行爬虫应用,可以在后面加 --nolog  取消日志    scrapy crawl 名称  --nolog

四、项目文件及结构

文件说明:

  • scrapy.cfg  项目的主配置信息。(真正爬虫相关的配置信息在settings.py文件中)
  • items.py    设置数据存储模板,用于结构化数据,如:Django的Model
  • pipelines    数据处理行为,如:一般结构化的数据持久化
  • settings.py 配置文件,如:递归的层数、并发数,延迟下载等
  • spiders      爬虫目录,如:创建文件,编写爬虫规则

注意:一般创建爬虫文件时,以网站域名命名

windows系统编码错误时:

解决方法:

 

import sys,io
sys.stdout=io.TextIOWrapper(sys.stdout.buffer,encoding='gb18030')

import scrapy

class ChoutiSpider(scrapy.Spider):
    name = 'chouti'
    allowed_domains = ['chouti.com']
    start_urls = ['https://dig.chouti.com/']

    def parse(self, response):
        pass

  

 

 

 

转载于:https://www.cnblogs.com/mainstream/p/11343698.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值