1.numpy
支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
功能:
- 一个强大的N维数组对象ndarray
- 广播功能函数
- 整合 c/c++/Fortran 代码的工具
- 线性代数, 傅里叶变换、随机数生成等功能
2.scipy
配合numpy完成对矩阵的计算,因此依赖于numpy,且含多个子模块,是一个开源的 Python 算法库和数学工具包。包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算。
功能:
a. 标准导入方式-由于scipy中的函数基本都是numpy的主函数,因此通常不用import scipy
1 import numpy as np 2 from scipy import stats #导入统计功能
b.一些常用功能模块
包括统计,优化,整合,线性代数模块,傅里叶变换,信号和图像处理,常微分方程求解器等等。
3.pandas-建立在numpy之上
a.标注导入方式
1 import numpy as np 2 import pandas as pd
b.n维数组的创建和操作
Series(对映一维数组),DataFrame(对映二维数组),Panel(对映三维数组),Panel4D(对映四维数组),PanelND(多维)等数据结构,常用的是Series和DataFrame。
4.matplotlib
数据的可视化,用于画图操作,内包含多个模块。是 Python 编程语言及其数值数学扩展包 NumPy 的可视化操作界面。它为利用通用的图形用户界面工具包,如 Tkinter, wxPython, Qt 或 GTK+ 向应用程序嵌入式绘图提供了应用程序接口(API)。
功能:绘制散点图、条形图等二维图、pyplot等常用模块
a.标注导入方式-依赖于numpy
1 import numpy as np 2 import matplot as plt
b. statsmodel可以补充scipy.stats,而且支持时间序列
5.Scikit-Learn
包含大量机器学习算法、数据集,需要NumPy和SciPy等其他包的支持,是Python语言中专门针对机器学习应用而发展起来的一款开源框架。
功能:Python开发的机器学习库,是数据挖掘方便的工具,需要在NumPy和SciPy基础上安装。
a.导入算法方式
1 from sklearn import linear_model#导入线性回归模型