带参数的sigmoid

$y=\frac{1}{1+e^{-(\alpha\times x+\beta)}}$
alpha越大,曲线越陡峭,beta控制平移

import numpy as np
import pylab as plt

x = np.linspace(-7, 7, 100)
alpha_range = [-1, 0, 1, 2, 1]
beta_range = [-1, 0, 0, 0, 1]
pairs = []
for alpha, beta in zip(alpha_range, beta_range):
    y = 1 / (1 + np.exp(- (alpha * x + beta)))
    plt.plot(x, y)
    pairs.append("alpha=%s,beta=%s" % (alpha, beta))
plt.legend(pairs)
plt.title("y=1/[1+e^(-(alpha*x+beta))]")
plt.show()

695653-20190227114551461-579614252.png

转载于:https://www.cnblogs.com/weiyinfu/p/10442717.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值