给定一个正数数组arr,
arr[i]=j表示从i个位置开始,跳一步可以往又越过随意的1-j个位置
你一开始站在0位置,请问跳到N-1位置,至少跳几步?
比如[4,1,9,1,1,1,1,4,1,1,1]
开始你在0位置,你可以自由的往又跳四个位置,
但是你选择跳到2位置(9所在的位置)
从这里就可以直接跳到N-1的位置了,因为9很大可以跳到最后面
返回2,表示最少两步可以搞定这个问题
思路:
假设有一个数组[4,1,3,2,4,2,6,1,1,1,2,1]
现在,我们设定四个常量
i 当前下标
jump 跳的步数
cur 当前位置所能到的最远边界
next 表示当前位置所能到的位置
当i=0时,当前所能到达的最远值cur=4,jump=0,next=4
当i=1时,当前下标所能到达的最远值2,比next小,所以next还是=4
当i=2时,当前下标所能到达的最远值5,比next大,next变为5
当i=3时,当前下标所能到达的最远值5,和next一样,next不变
当i=4时,当前下标所能到达的最远值8,next变为8
当i=5时,i>cur,则cur=next=8,next不变
。。。。。。
数组值:4 1 3 2 4 2 6 1 1 2 1
i:0 1 2 3 4 5 6 7 8 9 10
jump: 0 0 0 0 0 1 2 2 2 3 3
cur: 4 4 4 4 4 8 8 12 12 12 12
next: 4 4 5 5 8 8 12 12 12 12 12
最后我们可以看出jump=3
代码实现
public class dump {
public static int a(int[] arr){
int jump=0;
int cur=arr[0];
int next=0;
for (int i = 0; i <arr.length ; i++) {
//当当前下标大于最远边界cur时
if (i>cur){
jump++;
cur=next;
}
next=Math.max(next,i+arr[i]);
}
return jump;
}
public static void main(String[] args) {
int[] arr=new int[]{4,1,9,1,1,1,1,4,1,1,1};
System.out.println(a(arr));
}
}