【单片机/普中A2】学习笔记1-配置环境与STC-ISP烧录

本文主要讲述了在Win10环境下,如何解决开发板连接和串口驱动问题,以便进行STC单片机的程序烧录。首先强调了使用数据线而非充电线的重要性,然后指导下载并正确安装串口驱动,遇到问题时提供了解决方案,包括检查单片机连接、驱动预安装失败的排查以及关闭Win10数字签名检测。文章还提到了烧录源码的准备和烧录步骤,参考了B站上的视频教程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

目前我们的开发需求很简单,仅需三个软件:

  • keli5 编写代码
  • proteus8 professional 描绘电路板
  • STC-ISP 串口烧录

具体教程在 CSDN 等博客平台上已经有很多,这里就不再赘述(对应软件也可以直接在网上找到)

这里将主要集中于讲述我在配置过程中出现的错误以及对应的解决方法,全程跟下来相信你也能成功连接到开发板上并烧录你的第一个程序!


连接到开发板

Win10 用户看这里!!!安装部分可能会遇到些许问题,下文有针对性的分析

micro-usb 测试

再开始一切操作之前,务必检测开发板是否能和电脑正常链接

特别注意!链接开发板的 micro-usb 线必须是能传输数据的,单纯充电的不可以用!
当你发现连接到电脑时没有弹出任何提示窗口,且无法检测到 usb 接入时,就必须考虑这根线是不是数据线!!!
(鉴别指南:可传输数据的数据线一般较粗,且其中包裹着四根导线;而仅具备充电效果的线只包裹两根导线,且比较细)

一般的,仅具有充电功能的线链接到电脑后,开发板点击 power 键是可以正常上电并亮灯的,但是你无法做任何操作,因为电脑压根不识别;

此时,如果你使用了数据线链接电脑,会发现弹出一个“无法识别此驱动程序”,或者其他窗口,反正只要显示插入了一个设备,那么你这条线就没问题!

接下来我们将处理驱动的问题


安装串口驱动

前往该网址下下载最新版的串口驱动程序:https://www.wch.cn/download/CH341SER_EXE.html

接下来请严格按照我标注的步骤执行

  1. 保证单片机处于开启状态(默认单片机是关的,我们要摁一下 power 键,让他保持开启状态)
  2. 将 usb 连接到电脑上,此时单片机由于 power 键开启,立刻亮灯
  3. 打开串口驱动程序,点击"安装",稍等几秒后出现"驱动安装成功"后,即完成!

如果安装驱动时弹出“驱动预安装成功”,就表示安装失败了!
此时请检查一下你的单片机是否连接到了电脑(就比如说不要出现我们上面提出的用充电线连接单片机的现象)
单片机接口是否有损坏?
电脑的 usb 口供电是否充足?


串口驱动安装完毕后需要重启电脑

如果上述方法还是不能解决驱动安装失败的问题,那么可以尝试关闭 win10 的数字签名检测功能,具体过程网上自查


烧写

准备源码

本普中 A2 单片机开发笔记为跟随 B 站江科大视频记录而来,具体源码以及软件等请直接去对应视频简介栏获取:
https://www.bilibili.com/video/BV1Mb411e7re/?spm_id_from=333.337.search-card.all.click


下载源码文件,找到文件夹:KeilProject\2-1 点亮一个LED\Objects

找到文件 Project.hex 待会我们将会将他烧录到开发板里面


烧录

在这里插入图片描述

打开 STC-ISP

左上角选择两个关键要素

  • 芯片型号,我这边的型号为 STC89C52
  • 串口,这里务必选择格式为 USB-SERIAL CH340的串口

之后点击“打开程序文件”,选择我们上午提到的 hex 文件 Project.hex


烧写过程

  1. 首先保持开发板处于关闭状态
  2. 点击“下载/编程”,此时提示“正在检测目标单片机”
  3. 点击开发板 power,为其上电
  4. 此时开始烧写,等待一秒左右烧写完毕

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhillerDev

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值