漫谈斐波那契数列

Part1:斐波那契数列的定义

斐波那契数列(Fibonacci sequence)是从所谓的兔子繁殖问题定义的.假设每只兔子过\(2\)个月就有繁殖能力,每个月产下一只兔子.如果兔子不死,那么在第\(n\)个月你有多少只兔子?

设第\(n\)个月有\(F_n\)只兔子,显然\(F_1=F_2=1\).根据打表找规律可得

\[ F_n=F_{n-1}+F_{n-2}(n\ge3). \]

该数列从第三项起m每一项都是前两项的和.这就是斐波那契数列.根据计算可得,斐波那契数列的前几项是

\[ F_1=1,F_2=1,F_3=2,F_4=3,F_5=5,F_6=8,F_7=13,F_8=21,F_9=34,F_{10}=55,F_{11}=89,F_{12}=144,\dots \]

Part2:通项公式

根据定义,斐氏数列是一个线性递推数列.其特征方程为

\[ x^2=x+1 \]

因此有\(x_1=\frac{1-\sqrt 5}2,x_2=\frac{1+\sqrt 5}2\)(这两个数就是我们后面要介绍的黄金分割率).设\(F_n=C_1x_1^n+C_2x_2^n\),

\(\because F_1=F_2=1\)
\(\therefore C_1x_1+C_2x_2=C_1x_1^2+C_2x_2^2=1\)

解得\(C_1=\frac1{\sqrt5},C_2=-\frac1{\sqrt5}\).

所以斐波那契数列的通项公式为

\[ F_n=\frac1{\sqrt5}\left[\left(\frac{1+\sqrt5}2\right)^n-\left(\frac{1-\sqrt5}2\right)^n\right] \]

多神奇啊!斐波那契数列竟可以被无理数表示出.

Part3:斐波那契数列的性质

\(1.\)邻项方差:

\[ F_{n-1}\cdot F_{n+1}-F_n^2=(-1)^n \]

用数学归纳法易证.

\(2.\)通项求和:

\[ \sum_{i=1}^n F_n=F_{n+2}-2 \]

证明:

\[ F_1=F_2,\\ F_2=F_3-F_1,\\ \dots,\\ F_n=F_{n+1}-F{n-1} \]

所以原式成立.

\(3.\)奇数项求和:

\[ \sum_{i=1}^n F_{2i-1}=F_{2n} \]

证明:

\[ F_1=F_2,\\ F_3=F_4-F_2,\\ \dots,\\ F_{2n-1}=F_{2n}-F_{2n-2} \]

所以原式成立.

\(4.\)偶数项求和:

\[ \sum_{i=1}^n F_{2i}=F_{2n+1}-1 \]

把通项求和公式和奇数项求和公式减一下就好了.

\(5.\)平方求和:

\[ \sum_{i=1}^n F_{i}^2=F_{n+1}F_n \]

仿照上例证明展开即可.更直观地,

e5mrFI.png

如图,易知正方形面积和=边长之积,也就是上述平方和公式.

\(6.\)两倍项关系

\[ \frac{F_{2n}}{F_n}=F_{n-1}+F_{n+1} \]

展开既得.

\(7.\)倒数求和

\[ \sum_{i=1}^n\frac1{F_{i-1}+F_{i+1}}=1-\frac1{F_{n-1}F_n}\\ \sum_{i=1}^n\frac{F_i}{F_{i-1}F_{i+1}}=2-\frac1{F_{n-1}}-\frac1{F_n} \]

裂项即可.证明略.

\(8.\)三倍项关系

\[ F_{3n}=F_{n+1}^3+F_n^3-F_{n-1}^3 \]

证明略.

\(9.\)公约数

\[ \gcd(F_n,F_m)=F_{\gcd(n,m)} \]

证明:欲证\(\gcd(F_n,F_m)=F_{\gcd(n,m)}\),只需证\(\gcd(F_{n+m},F_n)=\gcd(F_m,F_n)\).又

\[ \begin{align} \gcd(F_{n+m},F_n) &=\gcd(F_{n+1}F_m+F_nF_{m-1},F_n)\\ &=\gcd(F_{n+1}F_m,F_n)\\ &=\gcd(F_{n+1},F_n)\cdot\gcd(F_m,F_n)\\ &=\gcd(F_m,F_n)=\gcd(F_m,F_n) \end{align} \]

故原式成立.

作为该结论的直接推论,有\(\gcd(F_n,F_{n+1})=1\).即斐氏数列的邻项互质.

\(10.\)带权和

\[ \sum_{i=1}^n i\cdot F_i=n\cdot F_{n+2}-F_{n+3}+2 \]

证明:运用数学归纳法.当\(n=1\)时,命题成立.

设当\(n=k\)时,命题成立,令\(S_i=\sum\limits_{i=1}^ni\cdot F_i\),则

\[ \begin{align} S_{k+1}&=S_k+F_{k+1}\cdot(k+1)\\ &=k\cdot F_{k+2}-F_{k+3}+2+F_{k+1}\cdot (k+1)\\ &=k\cdot F_{k+3}-F_{k+3}+2+F_{k+1}\\ &=k\cdot F_{k+3}-F_{k+2}+2\\ \end{align} \]

所以原命题成立.

Part4:黄金分割率

将一条线段分成两部分,使得其中一段的长度与全长之比,等于另一段与该线段长度之比,这,就是黄金分割率.

根据其定义,我们设\(\varphi=x\)(\(\varphi\)通常表示黄金分割率),则

\[ x^2+x-1=0 \]

解得

\[ x_1=\frac{\sqrt5-1}2,x_2=\frac{-\sqrt5-1}2(\text{舍}) \]

因此,\(\varphi=\frac{\sqrt5-1}2\approx 0.618\).

下面来讨论\(\varphi\)的性质.记\(\hat \varphi=\frac{\sqrt5+1}2\),称为\(\varphi\)的共轭.

\(1.\varphi=\frac1{\hat{\varphi}}\).这是因为

\[ \varphi\cdot\hat{\varphi}=\frac{\sqrt5-1}2\frac{\sqrt5+1}2=1 \]

\(2.\varphi+\varphi^2=1\).由定义既得.

\(3.\varphi+1=\frac1{\varphi}\).由\(2\)可推得.

Part5:斐波那契数列与黄金分割率

我们尝试除斐氏数列的邻项.有

\[ \frac{F_1}{F_2}=1,\frac{F_2}{F_3}=0.5,\frac{F_3}{F_4}\approx0.667,\frac{F_4}{F_5}=0.6,\frac{F_5}{F_6}=0.625,\dots \]

可以发现,相邻两项之比不断趋近于黄金分割率.更直观地,

\[ \frac{F_{20}}{F_{21}}\approx0.618033985017358;\\ \varphi\approx0.6180339887498949 \]

直到第\(10\)位才出现不同.那么,是否有

\[ \lim_{n\to\infty}\frac{F_n}{F_{n+1}}=\varphi \]

呢?答案是肯定的.

\[ F_n=F_{n-1}+F_{n-2} \]

两边同除\(F_{n+1}\)

\[ \frac{F_n}{F_{n+1}}+1=\frac{F_{n+2}}{F_{n+1}} \]

\(\lim\limits_{n\to\infty}\frac{F_n}{F_{n+1}}\)存在(存在性是显然的)且等于\(x\),则

\[ \lim_{n\to\infty}\frac{F_n}{F_{n+1}}=\lim_{n\to\infty}\frac{F_{n+1}}{F_{n+2}}=x \]

所以

\[ x+1=\frac1x \]

\(x>0\),所以\(x=\varphi\).

本文完

转载于:https://www.cnblogs.com/Anverking/p/math-fib.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值