25、Raspberry Pi 显示与 Arduino 应用全解析

Raspberry Pi 显示与 Arduino 应用全解析

1. 彩色 LED 矩阵显示

1.1 代码实现

以下是一段控制彩色 LED 矩阵的 Python 代码:

iter += 1
for x in range(0, 8):
    for y in range(0, 8):
        grid.setPixel(x, y, iter % 4 )
    time.sleep(0.02)

在导入相关库后,需创建 ColorEightByEight 实例:

grid = ColorEightByEight(address=0x70)

这里传入的参数是 I2C 总线地址。每个连接到总线的设备都有一个地址,模块板底部有三对点,连接它们可以改变地址,这在将多个相同显示器连接到一个 Raspberry Pi 时很有用。

1.2 代码解释

每次循环执行后,变量 iter 的值会加 1。 grid.setPixel 函数的前两个参数是像素的坐标(相对于 x 和 y 轴),第三个参数指定像素的颜色。具体颜色对应如下:
- 0:不点亮像素
- 1:点亮像素为绿色
- 2:点亮像素为红色
- 3:点亮像素为橙色

使用取模运算符( % )可以让

内容概要:本文围绕“融合模拟退火和自适应变异的混沌鲸鱼优化算法(AAMCWOA)”展开研究,提出一种创新的智能优化算法,通过引入混沌初始化、模拟退火机制和自适应变异策略,有效提升传统鲸鱼优化算法的收敛速度局搜索能力,避免陷入局部最优。该算法在MATLAB平台上实现,并应用于RBF神经网络的参数优化分类预测,验证了其在复杂非线性问题中的优越性能。文档还附带14页算法原理解析,深入阐述各改进模块的设计思路数学模型。此外,文中列举了大量相关科研方向应用场景,涵盖信号处理、路径规划、电力系统、故障诊断、机器学习等多个领域,展示了该算法的广泛适用性。; 适合人群:具备一定编程基础和优【创新SCI算法】AAMCWOA融合模拟退火和自适应变异的混沌鲸鱼优化算法研究(Matlab代码实现)化算法背景,从事智能算法研究或工程优化应用的研究生、科研人员及工程技术人员,尤其适合致力于智能计算、人工智能MATLAB仿真的1-3年经验研究人员。; 使用场景及目标:①用于解决复杂函数优化、神经网络参数调优、分类预测等科研问题;②作为SCI论文复现算法创新的基础工具,支撑高水平学术研究;③结合MATLAB代码实现,快速验证算法有效性并拓展至实际工程场景。; 阅读建议:建议结合提供的算法原理详解文档逐模块理解AAMCWOA的实现逻辑,通过调试MATLAB代码掌握参数设置性能评估方法,并尝试将其迁移至其他优化任务中进行对比实验,以深化对智能优化算法设计思想的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值