数论笔记

16 篇文章 0 订阅
15 篇文章 0 订阅

欧几里德算法概述:

   欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:  gcd函数就是用来求(a,b)的最大公约数的。  gcd函数的基本性质:  gcd(a,b)=gcd(b,a)=gcd(-a,b)=gcd(|a|,|b|)

欧几里得算法的公式表述

  gcd(a,b)=gcd(b,a mod b)  证明:a可以表示成a = kb + r,则r = a mod b

  假设d是a,b的一个公约数,则有  d|a(表示a能被d整除), d|b,而r = a - kb,因此d|r  因此d是(b,a mod b)的公约数 

     假设d 是(b,a mod b)的公约数,则  d | b , d |r ,但是a = kb +r  因此d也是(a,b)的公约数  因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等

欧几里德算法的C++语言描述

  int Gcd(int a, int b)  {  if(b == 0)  return a;  return Gcd(b, a % b);  }  

        当然你也可以写成迭代形式:  

int Gcd(int a, int b)
{
	while(b != 0)
	{
		int r = b;
		b = a % b;
		a = r;
	}
	return a;
}

扩展欧几里德算法

  扩展欧几里德算法是用来在已知a, b求解一组x,y使得ax+by = Gcd(a, b) =d(解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。下面是一个使用C++的实现:

int exgcd(int a,int b,int &x,int &y)  
{  
    if(b==0) { x=1, y=0; return a; }  
   int res=exgcd(b,a%b,y,x);  
   y-= a/b*x;  
   return res;  
}  

求解 x,y的方法的理解

  设 a>b。

  1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;

  2,ab!=0 时   设 ax1+by1=gcd(a,b);   bx2+(a mod b)y2=gcd(b,a mod b);

  根据朴素的欧几里得原理有 gcd(a,b)=gcd(b,a mod b);

  则:ax1+by1=bx2+(a mod b)y2;

  即:ax1+by1=bx2+(a-[a/b]*b)y2=ay2+bx2-(a/b)*by2;

  根据恒等定理得:x1=y2; y1=x2-[a/b]*y2;

  这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.

  上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。



数论中的逆元

  在模运算中,

  加法单位元是0,因为(0+a) mod m = a mod m;

  乘法单位元是1,因为(1×a) mod m = a mod m

  定义 对a∈Zm,存在b∈Zm,使得a+b ≡ 0 (mod m),则b是a的加法逆元,记b= - a。

  定义 对a∈Zm,存在b∈Zm,使得a×b ≡1 (mod m),则称b为a的乘法逆元。

     具体计算逆元时,计算加法逆元的方法是很显然的。 而对于乘法逆元:在mod m的操作下(即Zm中),a存在乘法逆元当且仅当a与m互质。

       不定方程ab+mx=1的任意一组整数解(b,x),b就是a的乘法逆元。具体计算可用扩展欧几里得

      

       

        例如:4关于模7的乘法逆元为多少?

  4*X≡1(mod 7)

  这个方程等价于求一个X和K,满足

  4X=7K+1

  其中X和K都是整数。

  若ax=1 mod f 则称a关于模f的乘法逆元为x。也可表示为ax≡1(mod f)。

  当a与f互素时,a关于模f的乘法逆元有唯一解。如果不互素,则无解。如果f为素数,则从1到f-1的任意数都与f互素,即在1到f-1之间都恰好有一个关于模f的乘法逆元。

  例如,求5关于模14的乘法逆元:

  14=5*2+4

  5=4+1

  说明5与14互素,存在5关于14的乘法逆元。

  1=5-4=5-(14-5*2)=5*3-14

  因此,5关于模14的乘法逆元为3。

       

       求a关于m的 逆元

int Inv(int a,int m){
   int d,x,y;
   d= Ext_gcd(a,m,x,y);
   if(d==1) return (x%m+m)%m;
   return -1;
}



Lucas定理


lucas 对组合数取模

lucas(n,m)=C(n%mod,m%mod)*lucas(n/mod,m/mod)%mod;

lucas(n,0)=1;

例题:hdu3037





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值