最新深度学习文本分类模型汇总(github开源)

640?wx_fmt=gif

向AI转型的程序员都关注了这个号👇👇👇

机器学习AI算法工程  公众号: datayx

它有各种文本分类的原型模型。虽然这些模型中的许多都很简单,但有些模型是经典的,所以它们可以很好地作为基础模型。每个模型在模型类下都有一个测试函数。你可以跑它先执行测试任务。模型独立于数据集。

在这里查看大规模多标签文本分类的正式文档,并进行深入学习。这里的几个模型也可以用于问题回答(有上下文或无上下文)建模,或者进行序列生成。我们探索了两个seq2seq模型(seq2seq with attention,transformer attention is all you needed)来进行文本分类。这两个模型也可以用于序列生成和其他任务。如果您的任务是多标签分类,您可以将问题强制转换为序列生成。

我们实现了两个记忆网络。一个是动态存储器网络。在此之前,它达到了相关的最新水平。回答、情绪分析和顺序生成任务。这就是所谓的一个模型来完成几个不同的任务,达到高性能。它有四个模块。关键部件是情景记忆模块。它使用门机制来注意性能,并使用选通GRU更新情节记忆,然后它有另一个GRU(垂直方向)来性能隐藏状态更新。它具有进行传递性推理的能力。我们实现的第二个内存网络是循环实体网络:跟踪世界状态。它有几个街区键值对作为内存,并行运行,达到了新的技术水平。可用于建模问题用上下文(或历史)回答。例如,您可以让模型阅读一些句子(作为上下文),并询问提问(作为查询),然后要求模型预测答案;如果您提供的故事与查询相同,那么它可以做到分类任务。

获取模型代码

关注微信公众号 datayx  然后回复 文本分类 即可获取。

Models:

  1. fastText

  2. TextCNN

  3. Bert:Pre-training of Deep Bidirectional Transformers for Language Understanding

  4. TextRNN

  5. RCNN

  6. Hierarchical Attention Network

  7. seq2seq with attention

  8. Transformer("Attend Is All You Need")

  9. Dynamic Memory Network

  10. EntityNetwork:tracking state of the world

  11. Ensemble models

  12. Boosting:

    for a single model, stack identical models together. each layer is a model. the result will be based on logits added together. the only connection between layers are label's weights. the front layer's prediction error rate of each label will become weight for the next layers. those labels with high error rate will have big weight. so later layer's will pay more attention to those mis-predicted labels, and try to fix previous mistake of former layer. as a result, we will get a much strong model. check a00_boosting/boosting.py

and other models:

  1. BiLstmTextRelation;

  2. twoCNNTextRelation;

  3. BiLstmTextRelationTwoRNN

AI项目体验地址 https://loveai.tech


阅读过本文的人还看了以下:

不断更新资源

深度学习、机器学习、数据分析、python

 搜索公众号添加: datayx  

640?wx_fmt=jpeg

长按图片,识别二维码,点关注

AI项目体验

https://loveai.tech

640?wx_fmt=png

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值