NLP推理与语义相似度数据集

847b6e532267cc47a315be22d815de53.gif

向AI转型的程序员都关注了这个号👇👇👇

机器学习AI算法工程   公众号:datayx

Chinese NLP Toolkits 中文NLP工具

Toolkits 综合NLP工具包

  • THULAC 中文词法分析工具包 by 清华 (C++/Java/Python)

  • NLPIR by 中科院 (Java)

  • LTP 语言技术平台 by 哈工大 (C++) pylyp LTP的python封装

  • FudanNLP by 复旦 (Java)

  • BaiduLac by 百度 Baidu's open-source lexical analysis tool for Chinese, including word segmentation, part-of-speech tagging & named entity recognition.

  • HanLP (Java)

  • FastNLP (Python) 一款轻量级的 NLP 处理套件。

  • SnowNLP (Python) Python library for processing Chinese text

  • YaYaNLP (Python) 纯python编写的中文自然语言处理包,取名于“牙牙学语”

  • 小明NLP (Python) 轻量级中文自然语言处理工具

  • DeepNLP (Python) Deep Learning NLP Pipeline implemented on Tensorflow with pretrained Chinese models.

  • chinese_nlp (C++ & Python) Chinese Natural Language Processing tools and examples

  • lightNLP (Python) 基于Pytorch和torchtext的自然语言处理深度学习框架

  • Chinese-Annotator (Python) Annotator for Chinese Text Corpus 中文文本标注工具

  • Poplar (Typescript) A web-based annotation tool for natural language processing (NLP)

  • Jiagu (Python) Jiagu以BiLSTM等模型为基础,使用大规模语料训练而成。将提供中文分词、词性标注、命名实体识别、情感分析、知识图谱关系抽取、关键词抽取、文本摘要、新词发现等常用自然语言处理功能。

  • SmoothNLP (Python & Java) 专注于可解释的NLP技术

  • FoolNLTK (Python & Java) A Chinese Nature Language Toolkit

Popular NLP Toolkits for English/Multi-Language 常用的英文或支持多语言的NLP工具包

  • CoreNLP by Stanford (Java) A Java suite of core NLP tools.

  • Stanza by Stanford (Python) A Python NLP Library for Many Human Languages

  • NLTK (Python) Natural Language Toolkit

  • spaCy (Python) Industrial-Strength Natural Language Processing with a online course

  • textacy (Python) NLP, before and after spaCy

  • OpenNLP (Java) A machine learning based toolkit for the processing of natural language text.

  • gensim (Python) Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora.

  • Kashgari - Simple and powerful NLP framework, build your state-of-art model in 5 minutes for named entity recognition (NER), part-of-speech tagging (PoS) and text classification tasks. Includes BERT and word2vec embedding.

Chinese Word Segment 中文分词

  • Jieba 结巴中文分词 (Python及大量其它编程语言衍生) 做最好的 Python 中文分词组件

  • 北大中文分词工具 (Python) 高准确度中文分词工具,简单易用,跟现有开源工具相比大幅提高了分词的准确率。

  • kcws 深度学习中文分词 (Python) BiLSTM+CRF与IDCNN+CRF

  • ID-CNN-CWS (Python) Iterated Dilated Convolutions for Chinese Word Segmentation

  • Genius 中文分词 (Python) Genius是一个开源的python中文分词组件,采用 CRF(Conditional Random Field)条件随机场算法。

  • loso 中文分词 (Python)

  • yaha "哑哈"中文分词 (Python)

  • ChineseWordSegmentation (Python) Chinese word segmentation algorithm without corpus(无需语料库的中文分词)

  • Go语言高性能分词 (Go) Go efficient text segmentation; support english, chinese, japanese and other.

  • Ansj中文分词 (java) 基于n-Gram+CRF+HMM的中文分词的java实现

Information Extraction 信息提取

  • MITIE (C++) library and tools for information extraction

  • Duckling (Haskell) Language, engine, and tooling for expressing, testing, and evaluating composable language rules on input strings.

  • IEPY (Python) IEPY is an open source tool for Information Extraction focused on Relation Extraction.

  • Snorkel A training data creation and management system focused on information extraction

  • Neural Relation Extraction implemented with LSTM in TensorFlow

  • A neural network model for Chinese named entity recognition

  • bert-chinese-ner 使用预训练语言模型BERT做中文NER

  • Information-Extraction-Chinese Chinese Named Entity Recognition with IDCNN/biLSTM+CRF, and Relation Extraction with biGRU+2ATT 中文实体识别与关系提取

  • Familia 百度出品的 A Toolkit for Industrial Topic Modeling

  • Text Classification All kinds of text classificaiton models and more with deep learning. 用知乎问答语聊作为测试数据。

  • ComplexEventExtraction 中文复合事件的概念与显式模式,包括条件事件、因果事件、顺承事件、反转事件等事件抽取,并形成事理图谱。

  • TextRank4ZH 从中文文本中自动提取关键词和摘要

QA & Chatbot 问答和聊天机器人

  • Rasa NLU (Python) turn natural language into structured data, a Chinese fork at Rasa NLU Chi

  • Rasa Core (Python) machine learning based dialogue engine for conversational software

  • Chatstack A Full Pipeline UI for building Chinese NLU System

  • Snips NLU (Python) Snips NLU is a Python library that allows to parse sentences written in natural language and extracts structured information.

  • DeepPavlov (Python) An open source library for building end-to-end dialog systems and training chatbots.

  • ChatScript Natural Language tool/dialog manager, a rule-based chatbot engine.

  • Chatterbot (Python) ChatterBot is a machine learning, conversational dialog engine for creating chat bots.

  • Chatbot (Python) 基於向量匹配的情境式聊天機器人

  • Tipask (PHP) 一款开放源码的PHP问答系统,基于Laravel框架开发,容易扩展,具有强大的负载能力和稳定性。

  • QuestionAnsweringSystem (Java) 一个Java实现的人机问答系统,能够自动分析问题并给出候选答案。

  • QA-Snake (Python) 基于多搜索引擎和深度学习技术的自动问答

  • 使用TensorFlow实现的Sequence to Sequence的聊天机器人模型 (Python)

  • 使用深度学习算法实现的中文阅读理解问答系统 (Python)

  • AnyQ by Baidu 主要包含面向FAQ集合的问答系统框架、文本语义匹配工具SimNet。

  • DuReader中文阅读理解Baseline代码 (Python)

  • 基于SmartQQ的自动机器人框架 (Python)

  • QASystemOnMedicalKG (Python) 以疾病为中心的一定规模医药领域知识图谱,并以该知识图谱完成自动问答与分析服务。

  • GPT2-chitchat (Python) 用于中文闲聊的GPT2模型

  • CDial-GPT (Python) 提供了一个大规模中文对话数据集,并提供了在此数据集上的中文对话预训练模型(中文GPT模型)

Corpus 中文语料

  • 开放知识图谱OpenKG.cn

  • 开放中文知识图谱的schema

  • 大规模中文概念图谱CN-Probase 公众号介绍

  • 大规模1.4亿中文知识图谱开源下载

  • 农业知识图谱 农业领域的信息检索,命名实体识别,关系抽取,分类树构建,数据挖掘

  • CLDC中文语言资源联盟

  • 中文 Wikipedia Dump

  • 基于不同语料、不同模型(比如BERT、GPT)的中文预训练模型 中文预训练模型框架,支持不同语料、编码器、目标任务的预训练模型(from RUC and Tencent)

  • OpenCLaP 多领域开源中文预训练语言模型仓库 (from Tsinghua)

  • 98年人民日报词性标注库@百度盘

  • 搜狗20061127新闻语料(包含分类)@百度盘

  • UDChinese (for training spaCy POS)

  • 中文word2vec模型

  • 上百种预训练中文词向量

  • Tencent AI Lab Embedding Corpus for Chinese Words and Phrases

  • 中文预训练BERT with Whole Word Masking

  • 中文GPT2训练代码 可以写诗,新闻,小说,或是训练通用语言模型。

  • 中文语言理解测评基准ChineseGLUE 包括代表性的数据集、基准(预训练)模型、语料库、排行榜。

  • 中华新华字典数据库 包括歇后语,成语,词语,汉字。

  • Synonyms:中文近义词工具包 基于维基百科中文和word2vec训练的近义词库,封装为python包文件。

  • Chinese_conversation_sentiment A Chinese sentiment dataset may be useful for sentiment analysis.

  • 中文突发事件语料库 Chinese Emergency Corpus

  • dgk_lost_conv 中文对白语料 chinese conversation corpus

  • 用于训练中英文对话系统的语料库 Datasets for Training Chatbot System

  • 八卦版問答中文語料

  • 中文公开聊天语料库

  • 中国股市公告信息爬取 通过python脚本从巨潮网络的服务器获取中国股市(sz,sh)的公告(上市公司和监管机构)

  • tushare财经数据接口 TuShare是一个免费、开源的python财经数据接口包。

  • 金融文本数据集 SmoothNLP 金融文本数据集(公开) Public Financial Datasets for NLP Researches

  • 保险行业语料库 [52nlp介绍Blog] OpenData in insurance area for Machine Learning Tasks

  • 最全中华古诗词数据库 唐宋两朝近一万四千古诗人, 接近5.5万首唐诗加26万宋诗. 两宋时期1564位词人,21050首词。

  • DuReader中文阅读理解数据

  • 中文语料小数据 包含了中文命名实体识别、中文关系识别、中文阅读理解等一些小量数据

  • Chinese-Literature-NER-RE-Dataset A Discourse-Level Named Entity Recognition and Relation Extraction Dataset for Chinese Literature Text

  • ChineseTextualInference 中文文本推断项目,包括88万文本蕴含中文文本蕴含数据集的翻译与构建,基于深度学习的文本蕴含判定模型构建.

  • 大规模中文自然语言处理语料 维基百科(wiki2019zh),新闻语料(news2016zh),百科问答(baike2018qa)

  • 中文人名语料库 中文姓名,姓氏,名字,称呼,日本人名,翻译人名,英文人名。

  • 公司名、机构名语料库 公司简称,缩写,品牌词,企业名。

  • 中文敏感词词库 敏感词过滤的几种实现+某1w词敏感词库

  • 中文简称词库 A corpus of Chinese abbreviation, including negative full forms.

  • 中文数据预处理材料 中文分词词典和中文停用词

  • 漢語拆字字典

  • SentiBridge: 中文实体情感知识库 刻画人们如何描述某个实体,包含新闻、旅游、餐饮,共计30万对。

  • OpenCorpus A collection of freely available (Chinese) corpora.

  • ChineseNlpCorpus 情感/观点/评论 倾向性分析,中文命名实体识别,推荐系统

  • FinancialDatasets SmoothNLP 金融文本数据集(公开) Public Financial Datasets for NLP Researches Only

  • People's Daily & Children's Fairy Tale PD&CFT: A Chinese Reading Comprehension Dataset


  • 哈工大 LCQMC 数据集

  • AFQMC 蚂蚁金融语义相似度数据集

  • OPPO 小布对话文本语义匹配数据集

  • 谷歌 PAWS-X 数据集

  • 北大中文文本复述数据集 PKU-Paraphrase-Bank

  • Chinese-STS-B 数据集

  • Chinese-MNLI 自然语言推理数据集

  • Chinese-SNLI 自然语言推理数据集

  • OCNLI 中文原版自然语言推理数据集

  • CINLID 中文成语语义推理数据集

以上数据集被汇总整理在 GitHub 仓库:https://github.com/zejunwang1/CSTS

语义相似度

哈工大 LCQMC 数据集

LCQMC 是哈尔滨工业大学在自然语言处理国际顶会 COLING2018 构建的问题语义匹配数据集,其目标是判断两个问题的语义是否相同。该数据集的数据预览如下:

喜欢打篮球的男生喜欢什么样的女生    爱打篮球的男生喜欢什么样的女生    1
我手机丢了,我想换个手机    我想买个新手机,求推荐    1
大家觉得她好看吗    大家觉得跑男好看吗?0

训练集、验证集和测试集的数量统计如下表所示:

数据集名称train
dev
test
LCQMC
238766880212500

原始数据集链接:http://icrc.hitsz.edu.cn/Article/show/171.html

AFQMC 蚂蚁金融语义相似度数据集

AFQMC(Ant Financial Question Matching Corpus)蚂蚁金融语义相似度数据集,用于问题相似度计算。即:给定客服里用户描述的两句话,用算法来判断是否表示了相同的语义。每一条数据有三个属性,分别是句子1,句子2,句子相似度标签。标签 "1" :表示两个句子的语义类似;"0":表示两个句子的语义不同。

原始数据为 json 格式,笔者将其处理成形如 LCQMC 三列的格式,每列之间使用 '\t' 分隔:

花呗消费超过额度有什么影响吗    花呗额度成负数有啥影响吗    1
还款还清了,为什么花呗账单显示还要还款    花呗全额还清怎么显示没有还款    1
花呗一次性付款有限制吗    解除花呗支付限制    0

训练集、验证集和测试集的数量统计如下表所示:

数据集名称train
dev
test
AFQMC3433443163861

原始数据集链接:https://tianchi.aliyun.com/dataset/dataDetail?dataId=106411

OPPO 小布对话文本语义匹配数据集

该数据集通过对闲聊、智能客服、影音娱乐、信息查询等多领域真实用户交互语料进行用户信息脱敏、相似度筛选处理得到,数据主要特点是文本较短、非常口语化、存在文本高度相似而语义不同的难例。该数据集所有标签都有经过人工精标确认。

原始数据为 json 格式,笔者将其处理成形如 LCQMC 三列的格式,每列之间使用 '\t' 分隔:

我真的超级生气    气死我了    1
你生日是几月几日    你的老师生日是几月几日    0
打电话给爱老公    给爱老公打电话    1

训练集、验证集和测试集的数量统计如下表所示:

数据集名称train
dev
test
OPPO-xiaobu
1671681000050000

原始数据集链接:https://tianchi.aliyun.com/competition/entrance/531851/introduction

谷歌 PAWS-X 数据集

谷歌发布的同义句识别数据集,中文部分包含了释义对和非释义对,即识别一对句子是否具有相同的释义(含义),特点是具有高度重叠词汇,重点考察模型对句法结构的理解能力。该数据集的数据预览如下:

2    1975年的NBA赛季 -  76赛季是全美篮球协会的第30个赛季。    1975-76赛季的全国篮球协会是NBA的第30个赛季。    1
3    还有具体的讨论,公众形象辩论和项目讨论。    还有公开讨论,特定档案讨论和项目讨论。    0
4    当可以保持相当的流速时,结果很高。    当可以保持可比较的流速时,结果很高。    1

每条数据包含4列,分别表示数据 id,sentence1,sentence2 和 label,每列之间使用 '\t' 分隔。

训练集、验证集和测试集的数量统计如下表所示:

数据集名称
train
dev
test
PAWS-X
49401
2000
2000

原始数据集链接:https://github.com/google-research-datasets/paws

北大中文文本复述数据集 PKU-Paraphrase-Bank

北大发布的中文文本复述语料库,每条数据包含两列,分别表示两个具有相同含义的句子,列与列之间使用 '\t' 分隔。该数据集一共有 509832 组句子对,平均每句 23.05 个词。

莫雷尔指指肩膀,向士兵们暗示那是一个军官,应当给他找个地方暖和暖和。莫雷尔指着他的肩,向士兵们示意,这是一个军官,应当让他暖和一下。
他细心地把斧头套在大衣里面的环扣里。他把斧子细心地挂在大衣里面的绳套上。
仁慈的上帝!难道那时我灵魂中还有一丝精力未曾使用?仁慈的主呵!那时难道有我心灵中的任何一种能力不曾发挥么?

原始数据集链接:https://github.com/pkucoli/PKU-Paraphrase-Bank/

Chinese-STS-B 数据集

该数据集通过翻译加部分人工修正的方法,从英文原数据集生成,可以一定程度上缓解中文语义相似度计算数据集不够的问题。每条数据包含三列,分别表示 sentence1、sentence2 和相似等级,相似等级范围为 0~5,5 表示语义一致,0 表示语义不相关。

一架飞机要起飞了。一架飞机正在起飞。5
一个男人在切面包。一个人在切洋葱。2
一个男人在划独木舟。一个人在弹竖琴。0
一个男人开着他的车。一个男人在开车。4
三个男孩在跳舞。孩子们在跳舞。3
一个人一只手握着一只小动物。一个男人在炫耀一只小猴子。1

训练集、验证集和测试集的数量统计如下表所示:

数据集名称
train
dev
test
Chinese-STS-B
523114581361

原始数据集链接:https://github.com/pluto-junzeng/CNSD

自然语言推理

Chinese-MNLI 自然语言推理数据集

该数据集来自于中文语言理解测评基准 CLUE benchmark(https://github.com/CLUEbenchmark/CLUE),数据内容来自于 fiction、telephone、travel、government、slate 等,通过对原始的英文 MNLI 和 XNLI 数据进行翻译得到。该数据集可用于判断给定的两个句子之间属于蕴涵、中立、矛盾关系。

{"sentence1": "神圣对她来说并不神秘。", "sentence2": "女人对神圣的东西很熟悉。", "label": "entailment"}
{"sentence1": "萨达姆可能会在阿拉伯世界的眼中变得更加强大(而美国被玷污了)。", "sentence2": "美国对萨达姆的看法也会恶化。", "label": "neutral"}
{"sentence1": "1995年6月21日,规定了评估和报告控制措施的具体要求。", "sentence2": "对评估没有具体要求。", "label": "contradiction"}
{"sentence1": "他们整合计划以提高效率并更有效地部署资源。", "sentence2": "提高效率的计划得到了巩固,因为他们非常关心效率。", "label": "-"}

原始的每条数据为 json 格式,包含三个属性:sentence1、sentence2 和 label 标签,其中 label 标签有三种:entailment、neutral、contradiction。笔者将原始数据转化成形如 LCQMC 三列的格式,并去除了极少部分标签为 "-" 的数据,处理后的数据预览如下:

我们设法找出各机构在过去5年中普遍采用的做法。我们想找出机构在过去5年中经常使用的做法。entailment
在这种令人惊奇的文化融合中,有一种对连续性的热情。对连续性的热情并不是这些文化中最重要的。neutral
很慢,现在市面上有很多更好的机器  这是最快的机器,你找不到更好的机器。contradiction

训练集、验证集和测试集的数量统计如下表所示:

数据集名称
train
dev
test
Chinese-MNLI
3917831224113880

原始数据集链接:https://storage.googleapis.com/cluebenchmark/tasks/cmnli_public.zip

Chinese-SNLI 自然语言推理数据集

该数据集通过翻译加人工修正的方法,从英文原数据集生成,可以一定程度上缓解中文自然语言推理数据集不够的问题。该数据集的格式和 Chinese-MNLI 一致,原始的每条数据为 json 格式,笔者将其转化成形如 LCQMC 三列的格式,处理后的数据预览如下:

用马和马车在花园里施肥的农民。这个人正在给他的花园施肥。entailment
用马和马车在花园里施肥的农民。那人在一片空地上,有一匹马和一辆马车。neutral
用马和马车在花园里施肥的农民。那人带着他的马和马车在城里的大街上。contradiction

训练集、验证集和测试集的数量统计如下表所示:

数据集名称
train
dev
test
Chinese-SNLI
54585993149176

原始数据集链接:https://gitee.com/jiaodaxin/CNSD

OCNLI 中文原版自然语言推理数据集

原生中文自然语言推理数据集 OCNLI,是第一个非翻译的、使用原生汉语的大型中文自然语言推理数据集。该数据集来自于中文语言理解测评基准 CLUE benchmark,原始的每条数据为 json 格式:

{
   "level":"medium",
   "sentence1":"推进集体林权制度改革",
   "sentence2":"推进集体林权制度改革需要分区域逐步施行",
   "label":"neutral",
   "genre":"gov",
   "prem_id":"gov_1862",
   "id":18554
}
{
   "level":"hard",
   "sentence1":"推进集体林权制度改革",
   "sentence2":"对旧有的林权制度进行调整",
   "label":"entailment",
   "genre":"gov",
   "prem_id":"gov_1862"
   "id":18555
}
{
   "level":"easy",
   "sentence1":"推进集体林权制度改革",
   "sentence2":"林权为私人所有",
   "label":"contradiction",
   "genre":"gov",
   "prem_id":"gov_1862",
   "id":18556
}

笔者将原始数据转化成形如 LCQMC 三列的格式,并去除了极少部分标签为 "null" 的数据,三列分别表示 sentence1、sentence2 和 label 标签。处理后的数据预览如下:

推进集体林权制度改革    推进集体林权制度改革需要分区域逐步施行    neutral
推进集体林权制度改革    对旧有的林权制度进行调整    entailment
推进集体林权制度改革    林权为私人所有    contradiction

训练集、验证集和测试集的数量统计如下表所示:

数据集名称
train
dev
test
OCNLI
5043729503000

数据集原始链接:https://storage.googleapis.com/cluebenchmark/tasks/ocnli_public.zip

CINLID 中文成语语义推理数据集

中文成语语义推理数据集(Chinese Idioms Natural Language Inference Dataset)收集了 91,247 个由人工撰写的成语对(含少量歇后语、俗语等短文本),通过人工标注的方式进行平衡分类,标签为 entailment、contradiction 和 neutral,支持自然语言推理(NLI)的任务。

原始数据集以 json 的形式存在,每一行即一条数据,每一条数据包含 sentence1、sentence2、和 label 三个字段,label 的取值范围为 entailment、contradiction 和 neutral。

{"sentence1":"拾陈蹈故","sentence2":"因循守旧","label":"entailment"}
{"sentence1":"稀奇古怪","sentence2":"平淡无奇","label":"contradiction"}
{"sentence1":"沉滓泛起","sentence2":"凤泊鸾飘","label":"neutral"}

笔者将原始数据转化成形如 LCQMC 三列的格式,预览如下:

拾陈蹈故    因循守旧    entailment
稀奇古怪    平淡无奇    contradiction
沉滓泛起    凤泊鸾飘    neutral

该数据可用于:

  • 测试语义模型的语义理解能力;

  • 用于微调预训练模型以获得良好的语句表示,能较好的捕捉语义相关性。

原始数据集链接:https://www.heywhale.com/mw/dataset/608a8c45d0bc41001722dc37/content

机器学习算法AI大数据技术
 搜索公众号添加: datanlp

长按图片,识别二维码
阅读过本文的人还看了以下文章:
TensorFlow 2.0深度学习案例实战

基于40万表格数据集TableBank,用MaskRCNN做表格检测

《基于深度学习的自然语言处理》中/英PDF

Deep Learning 中文版初版-周志华团队

【全套视频课】最全的目标检测算法系列讲解,通俗易懂!

《美团机器学习实践》_美团算法团队.pdf

《深度学习入门:基于Python的理论与实现》高清中文PDF+源码

《深度学习:基于Keras的Python实践》PDF和代码

特征提取与图像处理(第二版).pdf

python就业班学习视频,从入门到实战项目

2019最新《PyTorch自然语言处理》英、中文版PDF+源码
《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码

《深度学习之pytorch》pdf+附书源码

PyTorch深度学习快速实战入门《pytorch-handbook》

【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》

《Python数据分析与挖掘实战》PDF+完整源码

汽车行业完整知识图谱项目实战视频(全23课)

李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材

笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!
《神经网络与深度学习》最新2018版中英PDF+源码

将机器学习模型部署为REST API
FashionAI服装属性标签图像识别Top1-5方案分享

重要开源!CNN-RNN-CTC 实现手写汉字识别

yolo3 检测出图像中的不规则汉字
同样是机器学习算法工程师,你的面试为什么过不了?

前海征信大数据算法:风险概率预测

【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类

VGG16迁移学习,实现医学图像识别分类工程项目
特征工程(一)

特征工程(二) :文本数据的展开、过滤和分块

特征工程(三):特征缩放,从词袋到 TF-IDF

特征工程(四): 类别特征

特征工程(五): PCA 降维

特征工程(六): 非线性特征提取和模型堆叠

特征工程(七):图像特征提取和深度学习

如何利用全新的决策树集成级联结构gcForest做特征工程并打分?

Machine Learning Yearning 中文翻译稿
蚂蚁金服2018秋招-算法工程师(共四面)通过

全球AI挑战-场景分类的比赛源码(多模型融合)

斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)

python+flask搭建CNN在线识别手写中文网站
中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程
不断更新资源
深度学习、机器学习、数据分析、python
 搜索公众号添加: datayx
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值