- 博客(122)
- 资源 (4)
- 收藏
- 关注
原创 AI实战:github图像语义分割代码汇总
github图像语义分割代码汇总Semantic segmentationU-Net (https://arxiv.org/pdf/1505.04597.pdf)https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/ (Caffe - Matlab)https://github.com/jocicmarko/ultrasound-nerve-segmentation (Keras)https://github.com/Edwar
2020-11-14 10:26:01
220
原创 AI实战:图像语义分割数据集
语义分割数据集DatasetsStanford Background Datasethttp://dags.stanford.edu/projects/scenedataset.htmlSift Flow Datasethttp://people.csail.mit.edu/celiu/SIFTflow/Barcelona Datasethttp://www.cs.unc.edu/~jtighe/Papers/ECCV10/Microsoft COCO datasethttp://m
2020-11-07 10:01:11
123
原创 AI实战:图像语义分割标注工具
图像语义分割标注工具Annotation Tools:https://github.com/AKSHAYUBHAT/ImageSegmentationhttps://github.com/kyamagu/js-segment-annotatorhttps://github.com/CSAILVision/LabelMeAnnotationToolhttps://github.com/seanbell/opensurfaces-segmentation-uihttps://github.com
2020-11-07 10:00:43
127
原创 AI实战:2019、2020最新的中文文本检测检测模型
2019、2020最新的中文文本检测检测模型1、DBNet(Real-time Scene Text Detection with Differentiable Binarization)论文地址:https://arxiv.org/pdf/1911.08947.pdf作者:华中科技大学 Minghui Liao 1∗ , Zhaoyi Wan 2∗ , Cong Yao 2 , Kai Chen 3,4 , Xiang Bai 1网络结构创新点在基于分割的文本检测网络中,最终
2020-11-07 09:02:16
287
原创 AI实战:基于生成对抗网络 GAN 的图像去噪方法汇总
基于生成对抗网络 CGAN 的图像去噪方法汇总Conditional GAN denoiserTensorflow/Keras implementation of a Conditional Generative Adversarial Network (CGAN) model that can be used for image denoising or artefact removal.url:https://github.com/bencottier/cgan-denoiser论文地址:
2020-09-25 20:41:11
781
原创 AI实战:深度学习之知识蒸馏
简介知识蒸馏被广泛用于模型压缩和迁移学习。开山之作 Distilling the Knowledge in a Neural Network 。文章提出一种方法,把多个模型的知识提炼给单个模型。知识蒸馏,可以将一个网络的知识转移到另一个网络,两个网络可以是同构或者异构。做法是先训练一个teacher网络,然后使用这个teacher网络的输出和数据的真实标签去训练student网络。知识蒸馏,可以用来将网络从大网络转化成一个小网络,并保留接近于大网络的性能;也可以将多个网络的学到的知识转移到一个网络中,
2020-09-06 08:40:18
156
原创 AI实战:生成对抗网络 GAN 开源代码汇总
生成对抗网络 GAN 在机器视觉中的应用开源代码汇总CycleGAN and pix2pix in PyTorchstar: 12.7 K地址:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix论文地址:https://arxiv.org/pdf/1703.10593.pdf示例图pix2pixHDstar: 4.7 K地址:https://github.com/NVIDIA/pix2pixHD介绍Pytorc
2020-08-29 08:45:02
192
1
原创 CVPR 2020 生成对抗网络GAN 论文、代码汇总
GANYour Local GAN: Designing Two Dimensional Local Attention Mechanisms for Generative Models论文地址:https://arxiv.org/abs/1911.12287代码:https://github.com/giannisdaras/ylgMSG-GAN: Multi-Scale Gradient GAN for Stable Image Synthesis论文地址:https://arxiv.
2020-08-15 09:56:01
983
原创 AI实战:深度学习中的图像数据集
人脸图像数据集CelebA最大的公开的人脸图像数据集之一,名人脸属性数据集(CelebA)包含超过20万名名人的图像。VGGFace2最大的人脸图像数据集之一,VGGFace2包含从谷歌搜索引擎下载的图像。这些脸因年龄、姿势和种族而不同。每个受试者平均有362张图像。AFLW2K3D该数据集包含2000个面部图像,所有标注了3D人脸特征点。它是用来评估三维人脸特征点检测模型的。PubFigPublic Figures Face Database(哥伦比亚大学公众人物脸部数据库
2020-08-09 09:25:16
334
原创 中国大学人工智能(AI)专业综合实力排名
中国大学人工智能专业综合排名情况(TOP30)综合实力国际学术影响力2019年度普通高校“人工智能”方向本科专业综合实力排行榜“A类”表示人工智能方向教育教学综合实力总体水平位居全国高校之首。“B类”表示人工智能教育教学综合实力总体水平位居全国高校第二“C类”表示人工智能教育教学综合实力总体水平位居全国高校第三“D类”表示人工智能教育教学综合实力总体水平位居全国第四“E类”表示人工智能教育教学综合实力总体水平位居全国第五参考 人工智能专业排行榜
2020-08-02 13:51:46
259
原创 AI实战:一种新的深度目标检测架构 Matrix Nets
Matrix Nets: A New Deep Architecture for Object DetectionAP在MS COCO上实现了47.8的mAPAP比较Matrix Networks(a) Shows the original FPN architecture(b) Shows the MatrixNet architecture, where the 5 FPN layers are viewed as the diagonal layers in the mat
2020-07-25 08:44:27
181
原创 AI实战:pytorch版ResNet迁移学习
前言我的另外一篇基于tensorflow的迁移学习文章:AI实战:迁移学习之使用ResNet做分类本文介绍pytorch版ResNet迁移学习。本质:迁移学习到的是特征。加载预训练模型特征层 model.features分类层 model.classifier构建base model,作为特征层model = models.densenet18(pretrained=True)其他的网络可以参考: https://pytorch.org/docs/0.3.0/torchvisio
2020-07-19 10:10:33
338
原创 AI实战:最强文本检测模型Shape Robust Text Detection with Progressive Scale Expansion Network (PSENet)
文本行检测模型PSENet
2020-07-11 11:36:15
264
原创 AI实战:pytorch版DenseNet迁移学习
我的另外一篇迁移学习文章:AI实战:迁移学习之使用ResNet做分类构建base model,作为Feature Extractionmodel = models.densenet121(pretrained=True)其他的网络可以参考: https://pytorch.org/docs/0.3.0/torchvision/models.html#torchvision-models2、Fine-Tuninghttps://www.jianshu.com/p/19eb2075effe
2020-07-04 07:28:36
611
原创 GPU使用情况、GPU使用率查看、监控----nvidia-smi
Nvidia-sminvidia-smi是nvidia 的系统管理界面 ,其中smi是System management interface的缩写,它可以收集各种级别的信息,查看显存使用情况。用法GPU使用情况nvidia-smiGPU使用率及监控watch -n 1 nvidia-smi(监控间隔: 1s)其他指令参考https://blog.csdn.net/C_chuxin/article/details/82993350...
2020-06-26 13:34:53
1051
原创 AI实战:pytorch、 tensorflow 对比之推理时性能、GPU占用对比(一):DenseNet
本文分享推理时性能、GPU占用对比:pytorch 与 tensorflow 上的对比。DenseNet定义论文链接:Densely Connected Convolutional Networks参考:深度/机器学习基础知识要点:CNN、ResNet、DenseNetDenseNet参数参数情况flops对比DensetNet201在pytorch、tensorflow的情况图片输入尺寸80 × 80模型文件大小对比平台模型文件大小(单位:M)
2020-06-21 08:14:26
707
原创 图像对齐(图像配准)方法记录
图像对齐方法1、基于ORB特征的方法1、检测两张图的ORB特征点2、特征匹配3、计算单应性矩阵4、扭转图片具体的代码实现可以参考这篇文章:https://blog.csdn.net/yuanlulu/article/details/82222119?utm_source=blogxgwz72、图像模板匹配 + OCR识别验证1、在原图中获取模板图及对应的字符串(OCR识别即可得到)2、在目标图片上进行图像模板匹配3、对匹配到的结果进行OCR识别4、验证模板字符串与OCR识别结果
2020-05-31 16:40:52
1381
原创 Dockerfile总结:常用指令、注意事项、常见错误(no such file or directory、Permission denied)
什么是 Dockerfile?Dockerfile 是一个用来构建镜像的文本文件,文本内容包含了一条条构建镜像所需的指令和说明。指令详解点击参考:使用 Dockerfile 定制镜像注意事项RUN (docker镜像越来越大的原因之一)RUN <命令行命令> # <命令行命令> 等同于,在终端操作的 shell 命令。注意: Dockerfile 的指令每执行一次都会在 docker 上新建一层。所以过多无意义的层,会造成镜像膨胀过大。例如:FROM cen
2020-05-24 08:00:34
860
原创 AI实战:深度学习之人脸识别 Face recognition
前言人脸识别是机器视觉最成熟、最热门的领域,近几年,人脸识别已经逐步超过指纹识别成为生物识别的主导技术。人脸识别是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。【人脸识别:来源百度百科】人脸识别系统主要包括四个组成部分,分别为:人脸图像...
2020-05-17 09:53:52
785
原创 解决selenium.common.exceptions.SessionNotCreatedException:ChromeDriver only supports Chrome version 77
环境Ubuntu 16.04 LTSpython 3.x 报错信息:使用 Chrome 浏览器运行Web自动化测试报错,信息如下:Traceback (most recent call last): File "click_csdn_chromedriver.py", line 80, in <module> click_web(main_page_url)...
2020-05-09 20:06:35
505
原创 AI实战:目标检测模型应用之生活垃圾图片分类
前言大赛介绍“华为云杯”2020深圳开放数据应用创新大赛·生活垃圾图片分类 链接https://blog.csdn.net/weixin_38208912/article/details/103817188https://zhuanlan.zhihu.com/p/96033452目标检测模型实战过程数据增强模型选取开源代码...
2020-05-01 20:28:23
1532
原创 AI实战: YOLOv4: Optimal Speed and Accuracy of Object Detection
前言YOLOv4: Optimal Speed and Accuracy of Object Detection [Submitted on 23 Apr 2020] 【是的,你没看错,2020年04月23日,YOLO v4终于来了。】YOLO v4 论文:https://arxiv.org/abs/2004.10934YOLO v4 开源代码:https://github.com/Al...
2020-04-24 23:10:28
948
原创 Win7离线安装Chrome插件之Postman,报错Ignored insecure CSP value "https://ssl.google-analytics.com/ga.js”
前言由于无法访问google,所以安装chrome的插件很麻烦。项目测试需要用到Postman,这里就记录下Windows 7 下chrome浏览器安装Postman插件的过程。环境Windows 7chrome过程记录1、下载插件打开网址:https://www.crx4chrome.com/category/themes/往下拉一点,右侧有搜索框,如下图:...
2020-04-24 21:04:23
740
原创 正解python3 json报错:from None json.decoder.JSONDecodeError: Expecting value: line 1 column 6 (char 5)
环境Ubuntu 16.04 LTSpython3.x问题描述从字符串转换为json对象时,报错如下:Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/lib/python3.5/json/__init__.py", line 319...
2020-04-11 09:47:52
1046
原创 盘点国内那些深度学习框架:清华计图Jittor、腾讯优图NCNN、百度飞桨PaddlePaddle、阿里X-DeepLearning
1、清华计图Jittor清华大学开发了一个名为计图(Jittor)的深度学习框架。计图(Jittor:Just in Time)是一个采用元算子表达神经网络计算单元、完全基于动态编译(Just-in-Time)的深度学习框架,其主要特性为元算子和统一计算图。在编程语言上,Jittor 采用了灵活而易用的 Python。用户可以使用它,编写元算子计算的 Python 代码,然后 Jittor将...
2020-03-21 08:26:30
3008
原创 深度/机器学习基础知识要点:TFIDF、LDA、LSA
TFIDFTFTerm Frequency,即词频,它表示一个词在文档中出现的次数。计算公式:TF=某个词在文档中出现的次数文档的总词数TF = \frac{某个词在文档中出现的次数}{文档的总词数}TF=文档的总词数某个词在文档中出现的次数某个词出现越多,表示它约重要。某个词越少见,就越能表达一篇文章的特性,反之则越不能。IDFInverse Document Freq...
2020-03-20 21:47:59
979
原创 深度/机器学习基础知识要点:CTC算法
Connectionist Temporal Classification (CTC)CTC适合语音识别和手写字符识别任务定义输入表示:符号序列 X=[x1,x2,...,xT]X=[x_{1},x_{2},...,x_{T}]X=[x1,x2,...,xT]输出表示:符号序列Y=[y1,y2,...,yU]Y=[y_{1},y_{2},...,y_{U}]Y=[y1,y2...
2020-03-14 19:57:32
674
原创 AI实战:YOLK: Keras Object Detection API
YOLKYOLK为You Only Look Keras的缩写,是Keras的一站式对象检测API。通过几行代码,可以设置性能最佳的模型之一并将其应用于自己的数据集,轻松地训练自己的目标检测模型。Github地址https://github.com/KerasKorea/KerasObjectDetector安装(Linux)# Download YOLK API $ git clo...
2020-03-07 19:26:50
631
原创 AI工具:Windows7 32位操作系统安装PyCharm报错及interpreter field is empty错误的解决方案
Windows7 32位操作系统安装PyCharm报错Windows7 32Bit 安装 64 Bit Pycharm on Windows 7报错only support 64 bit解决方法1、下载32位PyCharm安装程序下载页面链接 点击我下载的是“Version 2018.3”中的“PyCharm Community Edition”的“2018.3.7 for Wi...
2020-03-07 09:06:45
495
原创 深度/机器学习基础知识要点:SVM、Clustering、LR、GBDT
SVMSVM(Support Vector Machines)定义一个能使两类之间的空间大小最大的一个超平面。这个超平面在二维平面上看到的就是一条直线,在三维空间中就是一个平面…。因此,我们把这个划分数据的决策边界统称为超平面。离这个超平面最近的点就叫做支持向量,点到超平面的距离叫间隔。支持向量机就是要使超平面和支持向量之间的间隔尽可能的大,这样超平面才可以将两类样本准确的分开,而保证间隔...
2020-03-06 20:19:37
506
原创 深度/机器学习基础知识要点:RNN、LSTM、GRU
RNN(循环神经网络)RNN示意图xxx是一个向量,它表示输入层的值;sss是一个向量,它表示隐藏层的值;UUU是输入层到隐藏层的权重矩阵;ooo也是一个向量,它表示输出层的值;VVV是隐藏层到输出层的权重矩阵。循环神经网络的隐藏层的值sss不仅仅取决于当前这次的输入xxx,还取决于上一次隐藏层的值sss。权重矩阵WWW就是隐藏层上一次的值作为这一次的输入的权重。输出值ot{o}_{t...
2020-02-28 22:13:06
672
原创 AI实战:深度学习模型压缩加速方法汇总
深度学习模型压缩加速方法可大致分为2大类1、设计新的卷积计算方法设计新的卷积计算方法,从而减少参数,达到压缩模型的效果,例如 SqueezedNet、mobileNet比如:depth-wise 卷积、point-wise 卷积(Depthwise卷积与Pointwise卷积详解)2、在已训练好的模型上做裁剪先训练好模型,再在其上做fine-tuning,主要方法包括:剪枝...
2020-02-22 20:18:19
1080
原创 深度/机器学习基础知识要点:CNN、ResNet、DenseNet
CNN(卷积神经网络)示意图:网络架构一个卷积神经网络由若干卷积层、Pooling层、全连接层组成。常用架构模式为:INPUT -> [[CONV]*N -> POOL?]*M -> [FC]*KCONV层输出值的计算步长为1时的公式其中,AAA 是卷积层输出的feature map,D 是深度动态计算过程Pooling层输出...
2020-02-22 11:06:22
550
原创 深度/机器学习基础知识要点:HMM、MEMM、CRF
HMM(隐马尔可夫模型)核心概念:隐含状态链可见状态链转移概率(transition probability)输出概率(emission probability)HMM公式举例说明:假设我手里有三个不同的骰子。第一个骰子是D6,6个面,每个面(1,2,3,4,5,6)出现的概率是1/6。第二个骰子是D4,每个面(1,2,3,4)出现的概率是1/4。第三个骰子D8,每个...
2020-02-17 22:07:26
481
快速搭建垃圾分类模型后台服务
2019-07-07
基于crf的中文命名实体识别完整代码(含训练数据)
2019-06-29
上海 垃圾分类识别模型
2019-07-06
快速搭建垃圾分类智能问答机器人--完整工程
2019-07-08
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人 TA的粉丝