自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(122)
  • 资源 (4)
  • 收藏
  • 关注

原创 AI实战:github图像语义分割代码汇总

github图像语义分割代码汇总Semantic segmentationU-Net (https://arxiv.org/pdf/1505.04597.pdf)https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/ (Caffe - Matlab)https://github.com/jocicmarko/ultrasound-nerve-segmentation (Keras)https://github.com/Edwar

2020-11-14 10:26:01 220

原创 AI实战:图像语义分割数据集

语义分割数据集DatasetsStanford Background Datasethttp://dags.stanford.edu/projects/scenedataset.htmlSift Flow Datasethttp://people.csail.mit.edu/celiu/SIFTflow/Barcelona Datasethttp://www.cs.unc.edu/~jtighe/Papers/ECCV10/Microsoft COCO datasethttp://m

2020-11-07 10:01:11 123

原创 AI实战:图像语义分割标注工具

图像语义分割标注工具Annotation Tools:https://github.com/AKSHAYUBHAT/ImageSegmentationhttps://github.com/kyamagu/js-segment-annotatorhttps://github.com/CSAILVision/LabelMeAnnotationToolhttps://github.com/seanbell/opensurfaces-segmentation-uihttps://github.com

2020-11-07 10:00:43 127

原创 AI实战:2019、2020最新的中文文本检测检测模型

2019、2020最新的中文文本检测检测模型1、DBNet(Real-time Scene Text Detection with Differentiable Binarization)论文地址:https://arxiv.org/pdf/1911.08947.pdf作者:华中科技大学 Minghui Liao 1∗ , Zhaoyi Wan 2∗ , Cong Yao 2 , Kai Chen 3,4 , Xiang Bai 1网络结构创新点在基于分割的文本检测网络中,最终

2020-11-07 09:02:16 287

原创 AI实战:生成对抗网络 GAN 原理

生成对抗网络 GAN 原理详情阅读:生成对抗网络 GAN 原理

2020-10-07 09:41:29 62

原创 AI实战:基于生成对抗网络 GAN 的图像去噪方法汇总

基于生成对抗网络 CGAN 的图像去噪方法汇总Conditional GAN denoiserTensorflow/Keras implementation of a Conditional Generative Adversarial Network (CGAN) model that can be used for image denoising or artefact removal.url:https://github.com/bencottier/cgan-denoiser论文地址:

2020-09-25 20:41:11 781

原创 AI实战:深度学习之知识蒸馏

简介知识蒸馏被广泛用于模型压缩和迁移学习。开山之作 Distilling the Knowledge in a Neural Network 。文章提出一种方法,把多个模型的知识提炼给单个模型。知识蒸馏,可以将一个网络的知识转移到另一个网络,两个网络可以是同构或者异构。做法是先训练一个teacher网络,然后使用这个teacher网络的输出和数据的真实标签去训练student网络。知识蒸馏,可以用来将网络从大网络转化成一个小网络,并保留接近于大网络的性能;也可以将多个网络的学到的知识转移到一个网络中,

2020-09-06 08:40:18 156

原创 AI实战:生成对抗网络 GAN 开源代码汇总

生成对抗网络 GAN 在机器视觉中的应用开源代码汇总CycleGAN and pix2pix in PyTorchstar: 12.7 K地址:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix论文地址:https://arxiv.org/pdf/1703.10593.pdf示例图pix2pixHDstar: 4.7 K地址:https://github.com/NVIDIA/pix2pixHD介绍Pytorc

2020-08-29 08:45:02 192 1

原创 CVPR 2020 生成对抗网络GAN 论文、代码汇总

GANYour Local GAN: Designing Two Dimensional Local Attention Mechanisms for Generative Models论文地址:https://arxiv.org/abs/1911.12287代码:https://github.com/giannisdaras/ylgMSG-GAN: Multi-Scale Gradient GAN for Stable Image Synthesis论文地址:https://arxiv.

2020-08-15 09:56:01 983

原创 AI实战:深度学习中的图像数据集

人脸图像数据集CelebA最大的公开的人脸图像数据集之一,名人脸属性数据集(CelebA)包含超过20万名名人的图像。VGGFace2最大的人脸图像数据集之一,VGGFace2包含从谷歌搜索引擎下载的图像。这些脸因年龄、姿势和种族而不同。每个受试者平均有362张图像。AFLW2K3D该数据集包含2000个面部图像,所有标注了3D人脸特征点。它是用来评估三维人脸特征点检测模型的。PubFigPublic Figures Face Database(哥伦比亚大学公众人物脸部数据库

2020-08-09 09:25:16 334

原创 中国大学人工智能(AI)专业综合实力排名

中国大学人工智能专业综合排名情况(TOP30)综合实力国际学术影响力2019年度普通高校“人工智能”方向本科专业综合实力排行榜“A类”表示人工智能方向教育教学综合实力总体水平位居全国高校之首。“B类”表示人工智能教育教学综合实力总体水平位居全国高校第二“C类”表示人工智能教育教学综合实力总体水平位居全国高校第三“D类”表示人工智能教育教学综合实力总体水平位居全国第四“E类”表示人工智能教育教学综合实力总体水平位居全国第五参考 人工智能专业排行榜

2020-08-02 13:51:46 259

原创 AI实战:一种新的深度目标检测架构 Matrix Nets

Matrix Nets: A New Deep Architecture for Object DetectionAP在MS COCO上实现了47.8的mAPAP比较Matrix Networks(a) Shows the original FPN architecture(b) Shows the MatrixNet architecture, where the 5 FPN layers are viewed as the diagonal layers in the mat

2020-07-25 08:44:27 181

原创 AI实战:pytorch版ResNet迁移学习

前言我的另外一篇基于tensorflow的迁移学习文章:AI实战:迁移学习之使用ResNet做分类本文介绍pytorch版ResNet迁移学习。本质:迁移学习到的是特征。加载预训练模型特征层 model.features分类层 model.classifier构建base model,作为特征层model = models.densenet18(pretrained=True)其他的网络可以参考: https://pytorch.org/docs/0.3.0/torchvisio

2020-07-19 10:10:33 338

原创 AI实战:最强文本检测模型Shape Robust Text Detection with Progressive Scale Expansion Network (PSENet)

文本行检测模型PSENet

2020-07-11 11:36:15 264

原创 AI实战:pytorch版DenseNet迁移学习
原力计划

我的另外一篇迁移学习文章:AI实战:迁移学习之使用ResNet做分类构建base model,作为Feature Extractionmodel = models.densenet121(pretrained=True)其他的网络可以参考: https://pytorch.org/docs/0.3.0/torchvision/models.html#torchvision-models2、Fine-Tuninghttps://www.jianshu.com/p/19eb2075effe

2020-07-04 07:28:36 611

原创 GPU使用情况、GPU使用率查看、监控----nvidia-smi

Nvidia-sminvidia-smi是nvidia 的系统管理界面 ,其中smi是System management interface的缩写,它可以收集各种级别的信息,查看显存使用情况。用法GPU使用情况nvidia-smiGPU使用率及监控watch -n 1 nvidia-smi(监控间隔: 1s)其他指令参考https://blog.csdn.net/C_chuxin/article/details/82993350...

2020-06-26 13:34:53 1051

原创 AI实战:pytorch、 tensorflow 对比之推理时性能、GPU占用对比(一):DenseNet

本文分享推理时性能、GPU占用对比:pytorch 与 tensorflow 上的对比。DenseNet定义论文链接:Densely Connected Convolutional Networks参考:深度/机器学习基础知识要点:CNN、ResNet、DenseNetDenseNet参数参数情况flops对比DensetNet201在pytorch、tensorflow的情况图片输入尺寸80 × 80模型文件大小对比平台模型文件大小(单位:M)

2020-06-21 08:14:26 707

原创 linux下文件压缩解压常用命令:tar、zip、unzip

linux下文件压缩解压常用命令tarzip

2020-06-14 13:39:32 333

原创 tmux的安装及用法

1、tmux安装1.1 tmux命令安装1.2 tmux安装包安装及编译2、tmux使用

2020-06-05 14:35:59 382

原创 图像对齐(图像配准)方法记录

图像对齐方法1、基于ORB特征的方法1、检测两张图的ORB特征点2、特征匹配3、计算单应性矩阵4、扭转图片具体的代码实现可以参考这篇文章:https://blog.csdn.net/yuanlulu/article/details/82222119?utm_source=blogxgwz72、图像模板匹配 + OCR识别验证1、在原图中获取模板图及对应的字符串(OCR识别即可得到)2、在目标图片上进行图像模板匹配3、对匹配到的结果进行OCR识别4、验证模板字符串与OCR识别结果

2020-05-31 16:40:52 1381

原创 Dockerfile总结:常用指令、注意事项、常见错误(no such file or directory、Permission denied)

什么是 Dockerfile?Dockerfile 是一个用来构建镜像的文本文件,文本内容包含了一条条构建镜像所需的指令和说明。指令详解点击参考:使用 Dockerfile 定制镜像注意事项RUN (docker镜像越来越大的原因之一)RUN <命令行命令> # <命令行命令> 等同于,在终端操作的 shell 命令。注意: Dockerfile 的指令每执行一次都会在 docker 上新建一层。所以过多无意义的层,会造成镜像膨胀过大。例如:FROM cen

2020-05-24 08:00:34 860

原创 AI实战:深度学习之人脸识别 Face recognition
原力计划

前言人脸识别是机器视觉最成熟、最热门的领域,近几年,人脸识别已经逐步超过指纹识别成为生物识别的主导技术。人脸识别是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。【人脸识别:来源百度百科】人脸识别系统主要包括四个组成部分,分别为:人脸图像...

2020-05-17 09:53:52 785

原创 解决selenium.common.exceptions.SessionNotCreatedException:ChromeDriver only supports Chrome version 77

环境Ubuntu 16.04 LTSpython 3.x 报错信息:使用 Chrome 浏览器运行Web自动化测试报错,信息如下:Traceback (most recent call last): File "click_csdn_chromedriver.py", line 80, in <module> click_web(main_page_url)...

2020-05-09 20:06:35 505

原创 AI实战:目标检测模型应用之生活垃圾图片分类

前言大赛介绍“华为云杯”2020深圳开放数据应用创新大赛·生活垃圾图片分类 链接https://blog.csdn.net/weixin_38208912/article/details/103817188https://zhuanlan.zhihu.com/p/96033452目标检测模型实战过程数据增强模型选取开源代码...

2020-05-01 20:28:23 1532

原创 AI实战: YOLOv4: Optimal Speed and Accuracy of Object Detection

前言YOLOv4: Optimal Speed and Accuracy of Object Detection [Submitted on 23 Apr 2020] 【是的,你没看错,2020年04月23日,YOLO v4终于来了。】YOLO v4 论文:https://arxiv.org/abs/2004.10934YOLO v4 开源代码:https://github.com/Al...

2020-04-24 23:10:28 948

原创 Win7离线安装Chrome插件之Postman,报错Ignored insecure CSP value "https://ssl.google-analytics.com/ga.js”

前言由于无法访问google,所以安装chrome的插件很麻烦。项目测试需要用到Postman,这里就记录下Windows 7 下chrome浏览器安装Postman插件的过程。环境Windows 7chrome过程记录1、下载插件打开网址:https://www.crx4chrome.com/category/themes/往下拉一点,右侧有搜索框,如下图:...

2020-04-24 21:04:23 740

原创 AI实战:垂直领域问答机器人QA Bot常见技术架构

垂直领域问答机器人QA Bot常见技术架构

2020-04-18 09:29:44 1129

原创 正解python3 json报错:from None json.decoder.JSONDecodeError: Expecting value: line 1 column 6 (char 5)

环境Ubuntu 16.04 LTSpython3.x问题描述从字符串转换为json对象时,报错如下:Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/lib/python3.5/json/__init__.py", line 319...

2020-04-11 09:47:52 1046

原创 深度/机器学习基础知识要点:Matrix Factorization

Matrix Factorization

2020-04-04 09:58:34 540

原创 开源搜索服务器Apache Solr 之 Pysolr

待写

2020-03-28 10:06:57 584

原创 盘点国内那些深度学习框架:清华计图Jittor、腾讯优图NCNN、百度飞桨PaddlePaddle、阿里X-DeepLearning

1、清华计图Jittor清华大学开发了一个名为计图(Jittor)的深度学习框架。计图(Jittor:Just in Time)是一个采用元算子表达神经网络计算单元、完全基于动态编译(Just-in-Time)的深度学习框架,其主要特性为元算子和统一计算图。在编程语言上,Jittor 采用了灵活而易用的 Python。用户可以使用它,编写元算子计算的 Python 代码,然后 Jittor将...

2020-03-21 08:26:30 3008

原创 深度/机器学习基础知识要点:TFIDF、LDA、LSA

TFIDFTFTerm Frequency,即词频,它表示一个词在文档中出现的次数。计算公式:TF=某个词在文档中出现的次数文档的总词数TF = \frac{某个词在文档中出现的次数}{文档的总词数}TF=文档的总词数某个词在文档中出现的次数​某个词出现越多,表示它约重要。某个词越少见,就越能表达一篇文章的特性,反之则越不能。IDFInverse Document Freq...

2020-03-20 21:47:59 979

原创 深度/机器学习基础知识要点:CTC算法

Connectionist Temporal Classification (CTC)CTC适合语音识别和手写字符识别任务定义输入表示:符号序列 X=[x1,x2,...,xT]X=[x_{1},x_{2},...,x_{T}]X=[x1​,x2​,...,xT​]输出表示:符号序列Y=[y1,y2,...,yU]Y=[y_{1},y_{2},...,y_{U}]Y=[y1​,y2...

2020-03-14 19:57:32 674

原创 AI实战:YOLK: Keras Object Detection API

YOLKYOLK为You Only Look Keras的缩写,是Keras的一站式对象检测API。通过几行代码,可以设置性能最佳的模型之一并将其应用于自己的数据集,轻松地训练自己的目标检测模型。Github地址https://github.com/KerasKorea/KerasObjectDetector安装(Linux)# Download YOLK API $ git clo...

2020-03-07 19:26:50 631

原创 AI工具:Windows7 32位操作系统安装PyCharm报错及interpreter field is empty错误的解决方案

Windows7 32位操作系统安装PyCharm报错Windows7 32Bit 安装 64 Bit Pycharm on Windows 7报错only support 64 bit解决方法1、下载32位PyCharm安装程序下载页面链接 点击我下载的是“Version 2018.3”中的“PyCharm Community Edition”的“2018.3.7 for Wi...

2020-03-07 09:06:45 495

原创 深度/机器学习基础知识要点:SVM、Clustering、LR、GBDT

SVMSVM(Support Vector Machines)定义一个能使两类之间的空间大小最大的一个超平面。这个超平面在二维平面上看到的就是一条直线,在三维空间中就是一个平面…。因此,我们把这个划分数据的决策边界统称为超平面。离这个超平面最近的点就叫做支持向量,点到超平面的距离叫间隔。支持向量机就是要使超平面和支持向量之间的间隔尽可能的大,这样超平面才可以将两类样本准确的分开,而保证间隔...

2020-03-06 20:19:37 506

原创 深度/机器学习基础知识要点:RNN、LSTM、GRU

RNN(循环神经网络)RNN示意图xxx是一个向量,它表示输入层的值;sss是一个向量,它表示隐藏层的值;UUU是输入层到隐藏层的权重矩阵;ooo也是一个向量,它表示输出层的值;VVV是隐藏层到输出层的权重矩阵。循环神经网络的隐藏层的值sss不仅仅取决于当前这次的输入xxx,还取决于上一次隐藏层的值sss。权重矩阵WWW就是隐藏层上一次的值作为这一次的输入的权重。输出值ot{o}_{t...

2020-02-28 22:13:06 672

原创 AI实战:深度学习模型压缩加速方法汇总

深度学习模型压缩加速方法可大致分为2大类1、设计新的卷积计算方法设计新的卷积计算方法,从而减少参数,达到压缩模型的效果,例如 SqueezedNet、mobileNet比如:depth-wise 卷积、point-wise 卷积(Depthwise卷积与Pointwise卷积详解)2、在已训练好的模型上做裁剪先训练好模型,再在其上做fine-tuning,主要方法包括:剪枝...

2020-02-22 20:18:19 1080

原创 深度/机器学习基础知识要点:CNN、ResNet、DenseNet

CNN(卷积神经网络)示意图:网络架构一个卷积神经网络由若干卷积层、Pooling层、全连接层组成。常用架构模式为:INPUT -> [[CONV]*N -> POOL?]*M -> [FC]*KCONV层输出值的计算步长为1时的公式其中,AAA 是卷积层输出的feature map,D 是深度动态计算过程Pooling层输出...

2020-02-22 11:06:22 550

原创 深度/机器学习基础知识要点:HMM、MEMM、CRF

HMM(隐马尔可夫模型)核心概念:隐含状态链可见状态链转移概率(transition probability)输出概率(emission probability)HMM公式举例说明:假设我手里有三个不同的骰子。第一个骰子是D6,6个面,每个面(1,2,3,4,5,6)出现的概率是1/6。第二个骰子是D4,每个面(1,2,3,4)出现的概率是1/4。第三个骰子D8,每个...

2020-02-17 22:07:26 481

快速搭建垃圾分类模型后台服务

基于Django、REST搭建的web服务,主要功能是集成了基于深度学习的建垃圾分类模型,使用到了inception-v3、textcnn模型。 完整的工程包括: 1、完整代码 2、完整的数据 3、完整的垃圾分类识别模型 4、文档

2019-07-07

基于crf的中文命名实体识别完整代码(含训练数据)

# 中文命名实体识别 基于条件随机场(Conditional Random Field, CRF)的NER模型 ## 数据集 数据集用的是论文ACL 2018[Chinese NER using Lattice LSTM](https://github.com/jiesutd/LatticeLSTM)中收集的简历数据,数据的格式如下,它的每一行由一个字及其对应的标注组成,标注集采用BIOES,句子之间用一个空行隔开。 ``` 美 B-LOC 国 E-LOC 的 O 华 B-PER 莱 I-PER 士 E-PER

2019-06-29

上海 垃圾分类识别模型

快速搭建垃圾分类模型: 使用inception快速搭建的图像分类模型,目前支持1000类识别。从图像中识别出类别后,再通过textcnn模型对垃圾类别进行映射,最终输出垃圾的类别。 注:垃圾类别是以上海分类标准。

2019-07-06

快速搭建垃圾分类智能问答机器人--完整工程

# 快速搭建垃圾分类智能问答机器人 基于深度学习实现的垃圾分类智能问答机器人 垃圾分类垂直领域问答机器人核心做法: 1、将问题分八大类,每个问题太类别给出一个回答 2、使用 word2vec + TextCNN 建立模型 - 环境要求 python: 3.x tensorflow: 1.x jieba word2vec # 模型训练 - 词向量方法 训练: 200个epoch,loss 0.829977, acc 0.686275 评估:0.791946 - 词汇索引方法 训练:200个epoch,loss 0.657236, acc 0.862745 评估:Accuracy: 0.852349

2019-07-08

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除