- 博客(622)
- 资源 (28)
- 问答 (1)
- 收藏
- 关注
原创 【一起学NLP】Chapter3-使用神经网络解决问题
在内部实现中,首先用零向量(np.zeros())初始化偏置,再用小的随机数(0.01 *np.random.randn())初始化权重。Trainer类的内部实现和刚才的源代码几乎相同,只是添加了一些新的功能而已,我们在需要的时候再详细说明其用法。另外,t是one-hot向量,对应的正确解标签的类标记为1,其余的标记为0。另外,Trainer类有plot()方法,它将fit()方法记录的损失(准确地说,是按照eval_interval评价的平均损失)在图上画出来。Epoch表示学习的单位。
2024-10-06 17:07:32 628
原创 【一起学NLP】Chapter2-学习神经网络
根据刚才复习的链式法则,反向传播中流动的导数的值是根据从上游(输出侧)传来的导数和各个运算节点的局部导数之积求得的。为什么说和W有关系呢?也就是说,只要能够计算各个函数的局部的导数,就能基于它们的积计算最终的整体的导数。所谓逆向关系,是指Sum节点的正向传播相当于Repeat节点的反向传播,Sum节点的反向传播相当于Repeat节点的正向传播。梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。
2024-09-23 16:07:13 1240
原创 【一起学NLP】Chapter1-基本语法与神经网络的推理
备注:本专栏为个人的NLP学习笔记,欢迎大家共同讨论交流学习。代码同步:https://github.com/codesknight/Learning-NLP-Together 参考书籍:《深度学习进阶:自然语言处理》——斋藤康毅。
2024-09-20 12:08:02 964
原创 Python应用案例——基于TensorFlow 2.3建立RNN搭配Word2Vec Embedding进行文本分类
中文停用词列表:提取码:xbf1测试用例:某外卖平台收集的用户评价,正向 4000 条,负向 约 8000 条—
2024-02-21 10:52:09 881
原创 Python应用案例——基于OpenCV图像卡通化处理&图像识别算法实验
首先导入所需的库,然后定义一个名为find_face_MTCNN的函数,该函数接收彩色图像和检测结果列表作为输入,对检测到的人脸进行矩形框标记并应用高斯模糊进行卡通化处理。在无限循环中,读取视频帧并使用MTCNN检测器检测人脸,然后将检测到的人脸传递给find_face_MTCNN函数进行卡通化处理。最后,将处理后的图像显示在窗口中,按下'q'键退出循环。sigma_s 控制邻域的大小,而 sigma_r(对于 sigma_range)控制邻域内相似颜色的平均值。
2024-02-21 09:59:37 459
原创 Python应用案例——基于Keras, OpenCV和MobileNet口罩佩戴识别
训练过程中,每个批次的大小为BS,每个周期(epoch)的训练步数为训练数据长度除以批次大小,验证数据为测试数据(testX和testY),验证步数为测试数据长度除以批次大小。然后,在基础模型的基础上构建了一个新的模型,该模型的输入与基础模型相同,输出为经过一系列操作后的全连接层。接下来,遍历每个类别,读取该类别下的所有图像,并将它们添加到数据列表中。对图像进行人脸检测。接下来,遍历检测到的人脸,计算每个检测框的坐标,并将人脸ROI从BGR格式转换为RGB格式,调整大小为224x224,并进行预处理。
2024-02-21 09:39:55 1190
原创 Python应用案例——基于Flask框架的图像识别小程序
链接:https://pan.baidu.com/s/1FkdQXv13OefohvbgXzMvLA。应用keras框架的现有模型Vgg19。预测结果:罗得西亚脊背犬。
2024-02-21 08:56:38 365
原创 Python应用案例——基于Flask框架的医疗专家系统小程序
1、用户通过输入病症描述,系统自动返回给用户最相似的病例信息和治疗方案。2、能搜索、展示一个或全部病例信息。
2024-02-21 08:43:48 521
原创 解决ModuleNotFoundError: No module named ‘pysqlite2‘
在重新安装的anaconda环境中自建了一个新虚拟环境,再安装完jupyter后(pip install jupyter),执行启动指令:jupyter notebook。发生报错:ModuleNotFoundError: No module named 'pysqlite2'ModuleNotFoundError: No module named 'pysqlite2'意思是:找不到名为 "pysqlite2" 的模块。根据缺什么补什么原则,我们需要添加模块pysqlite2。
2024-02-19 23:04:31 1458
原创 对于Anaconda3重新下载安装的一些补充
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. 错误:pip的依赖解析器当前没有考虑到所有已安装的软件包。(2)创建一个新的虚拟环境(可选,但推荐)。`命令升级pip到最新版本,然后再次尝试安装或升级包。
2024-02-19 21:56:32 965
原创 解决:Python-Flask框架—通过flask_login模块及Session模块检测是否有用户登录
当用户成功登录后,我们将用户的登录状态存储在会话中。然后,在需要检查用户是否登录的视图函数(如。(id即为用户名,前端传递回来的是user_name,与后端user_id是同意。配置项来设置session的过期时间。如果用户未登录,我们可以重定向到登录页面。这样,当用户会话超过30分钟后,session将被自动过期并清除。这样,当用户会话超过30秒后,session将被自动过期并清除。然后,在Flask应用中配置和使用。在Flask中,可以通过设置。在Flask中,可以通过设置。在这个示例中,我们使用了。
2024-02-18 12:41:00 1155
原创 Python应用案例——基于Word2Vec文本匹配的医疗方案推荐算法
较大的学习率可能会导致模型快速收敛但可能无法找到全局最优解,而较小的学习率则会导致模型收敛缓慢。在这个例子中,alpha被设置为0.025,表示每次更新词向量时,将根据当前的梯度方向沿着负梯度方向移动800维空间中的2.5个单位长度。其中,vocab表示词汇表的大小为2332,vector_size表示词向量的维度为800,alpha表示学习率(步长)为0.025。链接:https://pan.baidu.com/s/15MymdTE0GrV3gsF6bA6_wA。'头疼 胸闷 气短 心如刀绞 ',
2024-02-05 11:38:46 138
原创 (8)【Python/机器学习/深度学习】Deep-Learning模型与算法应用—常见的神经网络ANNMLP, CNN, RNN区别及应用&Keras、TensorFlow框架应用
是一个功能强大且易于使用的免费开源Python库,用于开发和评估深度学习模型。(1)定义Keras模型(2)加载数据(3)编译Keras模型(4)拟合Keras模型(5)评估Keras模型(6)进行预测3、ANN多层感知机MLP应用通过一个或多个密集层(Dense layer)创建多层感知器(MLP)。这种模型适用于表格数据,即在表格或电子表格中的数据,每个变量对应一列,每行对应一个变量。您可能希望使用MLP探索的三个预测建模问题包括:二元分类、多类分类和回归。
2024-02-04 19:57:51 1625
原创 (7)【Python/机器学习/深度学习】Deep-Learning模型与算法应用—深度学习基础&搭建最小神经网络
14print(a @ b)#dot的另一种写法14bias = 1输入被送入感知器每个输入乘以权重求和然后加上偏置应用激活函数。注意,这里我们使用阶跃函数,但也有其他更复杂的激活函数,如sigmoid、双曲正切(tanh)、整流器(relu)等。不用担心,我们将在未来涵盖许多这些函数!输出要么触发为1,要么不触发为0。注意我们使用y hat来标记我们的感知器模型产生的输出这是一个使用Keras库构建的简单神经网络模型。
2024-02-04 19:48:49 1004
原创 (6)【Python/机器学习/深度学习】Machine-Learning模型与算法应用—使用Adaboost建模及工作环境下的数据分析整理
英文全称"",意为,是一种基于Boosting集成学习的算法。Boosting是一种试图从多个弱分类器中创建一个强分类器的集合技术。Adaboost的核心思想是通过从训练数据构建模型,然后创建第二个模型来尝试修正第一个模型的错误。Adaboost算法最初由Yoav Freund和Robert Schapire在1995年提出。该算法的主要目标是通过反复学习不断改变训练样本的权重和弱分类器的权值,最终筛选出权值系数最小的弱分类器组合成一个最终强分类器。
2024-02-04 19:31:18 1396
原创 (5)【Python/机器学习/深度学习】Machine-Learning模型与算法应用—12种聚类算法说明与归纳
与传统的基于密度的聚类算法DBSCAN相比,OPTICS算法的优势在于可以获得不同密度的聚类。:顾名思义,这些模型基于数据点在数据空间中越接近的数据点彼此之间的相似性比远离的数据点更高的观点。:这些是迭代聚类算法,其中相似性的概念是通过数据点与簇的质心的距离来推导出来的。具体来说,KMeans算法首先随机选择k个样本作为初始聚类中心点,然后通过计算每个数据点到各个聚类中心点的距离,将数据点分配到距离最近的聚类中心点所在的簇中。这些是迭代聚类算法,其中相似性的概念是通过数据点与簇的质心的距离来推导的。
2024-02-04 19:18:43 1412
原创 (4)【Python数据分析进阶】Machine-Learning模型与算法应用-回归、分类模型汇总
欧氏距离(Euclidean Distance):欧氏距离是最容易直观理解的距离度量方法,我们小学、初中和高中接触到的两个点在空间中的距离一般都是指欧氏距离。曼哈顿距离(Manhattan Distance):曼哈顿距离是指在m维空间中两个点之间的绝对轴距总和,也就是两个点在各个坐标轴上差的绝对值之和。切比雪夫距离(Chebyshev Distance):切比雪夫距离是指两个点在m维空间中所在坐标轴上差的最大值。
2024-02-04 19:13:26 1532
原创 解决gitee文件大小超过100MB——分片上传(每片<100MB)
3. 在仓库中创建一个新文件(例如:`large_file.txt`),并将所有子文件的内容依次追加到这个新文件中。Gitee 上传文件大小限制为 100MB。2. 使用 Gitee 的命令行工具 `git` 分别将这些子文件添加到仓库中。1. 将大文件分割成多个小于 100MB 的子文件。4. 提交并推送更改到仓库。
2024-02-04 12:44:59 3353
原创 【机器学习入门】18种常见的机器学习算法数学公式及解析
机器学习算法基础原理:机器学习算法模型应用:(3)【Python数据分析进阶】Machine-Learning模型与算法应用-线性回归与逻辑回归-CSDN博客sklearn,全称scikit-learn,是一个基于Python的开源机器学习工具包。它提供了各种分类、回归和聚类算法,包括但不限于支持向量机、随机森林、梯度提升、k均值和DBSCAN等。此外,它还包含了许多常用的机器学习算法、预处理技术、模型选择和评估工具等,可以方便地进行数据挖掘。
2024-01-28 21:15:43 2930
原创 (3)【Python数据分析进阶】Machine-Learning模型与算法应用-线性回归与逻辑回归
sklearn,全称scikit-learn,是一个基于Python的开源机器学习工具包。它提供了各种分类、回归和聚类算法,包括但不限于支持向量机、随机森林、梯度提升、k均值和DBSCAN等。此外,它还包含了许多常用的机器学习算法、预处理技术、模型选择和评估工具等,可以方便地进行数据挖掘。这个库通过集成NumPy, SciPy和Matplotlib等Python数值计算的库实现了高效的算法应用。可以说,sklearn是机器学习中一个非常常用且功能强大的Python第三方模块。
2024-01-20 19:46:33 5153
原创 (2)【Python数据分析应用案例】基于泰坦尼克船员数据的完整数据分析全过程
编程开始前,我们获取到在我的gitee仓库中下载此文件:这个就是我们本次使用的案例数据now,废话不多说,让我们开始本次数据分析之旅!
2024-01-18 20:06:25 1570 1
原创 【深度学习入门】深度学习基础概念与原理
深度学习是机器学习中的一种基于人工神经网络的机器学习方法,其关键在于通过多层神经网络对输入数据进行逐深度学习是机器学习中的一种基于人工神经网络的机器学习方法,其关键在于通过多层神经网络对输入数据进行逐层抽象和表示学习,从而实现对复杂数据结构和非线性关系的建模。深度学习模型通常包含多个隐藏层,每个隐藏层都有许多神经元。这些神经元通过权重连接,模拟了生物神经元之间的信号传递过程。深度学习的目标是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。
2024-01-17 08:32:19 2065
原创 【机器学习入门】机器学习基础概念与原理
机器学习是人工智能和计算机科学的一个分支,它专注于使用数据和算法模仿人类学习的方式,逐步提高自身的准确性。更具体地说,机器学习是赋予计算机学习能力的研究领域,它不需要明确的编程,就能让计算机学习。监督学习非监督学习强化学习,而监督学习和非监督学习中又衍生出半监督学习。在实际应用中,机器学习广泛应用于计算机视觉、自然语言处理、推荐系统等领域,主要关注点在于自动化和预测。
2024-01-16 20:53:48 1396
原创 (1)【零基础入门Python数据分析】Anaconda3 JupyterNotebook&seaborn版
Anaconda是一个开源的Python发行版本,其特点在于专注于数据分析,包含了conda、Python以及180多个科学包及其依赖项。它主要用于处理科学计算相关的任务,如数据分析和机器学习开发等。Anaconda的一大优势是其强大的包管理功能。利用conda,开发者可以方便地安装、切换和管理第三方包及其环境。此外,Anaconda还提供了创建、删除虚拟环境的功能,使得不同项目的运行环境得以隔离,避免了不同库之间的冲突。
2024-01-14 14:54:02 1376
原创 解决URLError: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed
网址错误: < urlopen error [ SSL: CERTIFICATE _ VERIFY _ FAILED ]证书验证失败: 主机名不匹配,证书对“ raw.githubusercontent.com”无效。
2024-01-14 13:01:10 5299 1
原创 解决JuPyter500:Internal Server Error问题
在启动Anaconda Prompt后,通过cd到项目文件夹启动Jupyter NoteBook点击.ipynb文件发生500报错。由于下载安装包的权限设置,我的必须以管理员方式打开命令窗口才能升级。发现jupyter环境下缺少安装包nbconvert。通过pip下载安装包,发现pip版本过低,要先升级。pip升级成功,下载缺失包nbconvert。看来是之前nbconvert版本过低导致。发现不好使,环境中还是没有安装上。之后就可以正常使用了。
2024-01-10 16:16:42 4253 2
原创 VUE基础入门
前期基础语法,我们通过链接的方式使用vue,后面会用npm进行安装。v-model:双向绑定,如果页面值发生变化,则数据本身值也发生变化。基础语法,vue2和vue3区别不大,但是后面路由会有很大区别。v-html指令的作用是:设置元素的innerHTML。安装插件open in browser。安装Live Serve插件能同步刷新。频繁判断用v-show性能更高。通过 CDN 使用 Vue。代码页面右键在浏览器打开。
2023-11-18 11:16:08 283
原创 【Python-Django】基于TF-IDF算法的医疗推荐系统复现过程
修改原templates路径,删除,将setting.py中的路径置空。在app目录下创建static和templates目录。4、静态文件路径(如果静态文件名字没改则这里不用改)2、修改templates路径(第一步)复制views代码(核心算法设计)settings代码改动部分。将项目中的资源文化进行拷贝。全部指令及所需安装库指令。复制models层代码。②安装数据库(手动)准备就绪,原神启动!
2023-10-13 19:30:29 1098
原创 【Java-SpringBoot+Vue+MySql】前后端分离项目云端部署
服务器的环境配置比较容易解决,个人感觉比较棘手的是跨域问题和Nginx代理的配置问题,跨域问题通过杨海钰同学的帮助在前端添加代理已完美解决;将在本地的ip(localhost)改为对应的云服务器公网ip,终端执行打包指令:npm run build。
2023-06-30 13:07:38 1284
原创 【Java-SpringBoot+Vue+MySql】项目开发综合—经验总结
vue支持组件式开发,每个组件基本上都有三大模块组成:、、(dao/mapper):编写数据库连接接口和mapper.xml(使用Mybatis语句连接数据库)——》(service):Service接口和ServiceImpl实现类——》前端:Vue2.x、Element-ui3.x、jqurey、axios。注意:数据绑定、双向绑定、获取一行的数据、网络请求传参……Mapper接口(Dao/mapper)(pojo/entity):实体类——》
2023-06-26 17:27:33 1714
原创 【Java-SpringBoot+Vue+MySql】项目开发杂记
关于添加,因为前端是以表单形式向后端传递封装好的数据,所以使用Post请求,后端参数前加注释@RequestBody。tableData是一个列表,在后端写好接口后,调用接口,可以得到数据库中的数据,是存储在列表中的。通过template的slot-scope="scope",使用scope.row拿到当前行的数据。我们想在哪个组件中使用jQuery库,首先要使用如下命令引入jquery,然后就可以正常使用了。save方法:发送前端请求和封装好的数据user。前端使用axios进行网络请求,并返回数据。
2023-06-26 16:40:04 1013
原创 【Java-SpringBoot+Vue+MySql】Day5-前端进阶
起步 | Axios 中文文档 | Axios 中文网 导入:可以在任意组件中通过import导入。使用方法:基本语法: 每个组件都有生命周期,同时也有生命周期函数,这些函数在script中是与data、method同级的。created():(组件创建时调用)在每个组件里写一个created函数,打开网页控制台,可以看到(在组件创建时)打印出每个组件里的消息。 mounted():(组件挂载时调用)注意前后端同时启动时不能占用同一个端口!!! 前端默认占用8080端
2023-06-23 08:50:59 1436
原创 【Java-SpringBoot+Vue+MySql】Day4.1-VUE框架+VCharts图表
【代码】【Java-SpringBoot+Vue+MySql】Day4.1-VUE框架+VCharts图表。
2023-06-23 00:58:37 242 1
党史(主题可替换)知识学习系统源文件
2024-02-21
《诗梦游记》项目源文件
2024-02-21
医疗病例数据信息(共1193条病例信息)
2024-02-21
基于Flask框架的图像识别小程序
2024-02-21
基于Flask框架的医疗专家系统小程序
2024-02-21
深度学习实验报告+代码
2022-11-15
这算不算是本末倒置,这种学习方式效果真的好吗?
2021-12-23
TA创建的收藏夹 TA关注的收藏夹
TA关注的人