给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
图1 |
图2 |
现给定两棵树,请你判断它们是否是同构的。
输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。
输入样例1(对应图1):
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
输出样例1:
Yes
输入样例2(对应图2):
8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4
输出样例2:
No
解题思路:
1.构造树的方法:利用结构体数组构造树(静态链表)数组下标表示树的编号;
2.在构造树后需要寻找根节点,根节点的特性是:不是任何一个节点的孩子。我们可以利用该特性找到根节点。
构建check数组,数组下标表示对应节点编号,数组值为0则表示该节点不是任何节点的孩子,值为1则表示该节点是某个节点的孩子。在构建树的同时给check数组打上标记,最后判断寻找根节点即可。
3.判断同构的方法:利用递归判断会相对简单,具体思路如下:
函数参数为r1,r2即两个树的根
条件1:如果r1=null&&r2==null 两棵树为空 则同构
条件2:如果root1 == null&&root2 != null || root1 != null&&root2 == null 一棵树非空且另一棵树为空 则不为同构
条件3:如果 t1[root1].data != t2[root2].data 两棵树的根值不同 则不是同构
注意:判断完条件3后说明两棵树根值相同,以下条件是在满足条件3的情况下进一步地判断的。
条件4:t1[root1].left == null&&t2[root2].left == null 两棵树均没有左孩子,则去判断以两棵树的右孩子为根是否同构。
条件5:t1[root1].left != null&&t2[root2].left != null&&t1[t1[root1].left].data == t2[t2[root2].left].data
即两棵树的左孩子非空且值相等,则 判断 两棵树以左孩子为根的树是否同构并且 判断 两棵树以右孩子为根的树是否同构
最后如果不满足条件5,即两棵树的根的左孩子值不相等
则去分别 左右交叉判断是否同构。
最后的最后,还需要注意的是:二叉树的孩子信息可能是'-',所以全要用char类型进行读取,并用getchar()吃换行。
具体代码如下:
#include<stdio.h>
#include<string.h>
#define MAXTREE 10
#define null -1
typedef struct tree
{
char data;
int left;
int right;
}tree;
tree t1[MAXTREE], t2[MAXTREE];
int check[MAXTREE];
int buildTree(tree *t);
int Isomorphism(int root1, int root2);
int main()
{
int r1, r2;
r1 = buildTree(t1);
r2 = buildTree(t2);
if (Isomorphism(r1, r2))
printf("Yes\n");
else
printf("No\n");
return 0;
}
int buildTree(tree* t)
{
int root = null, i;
int n;
char cl, cr;
scanf("%d", &n);
if (n)
{
memset(check, 0, sizeof(check));
for (i = 0; i < n; i++)
{
getchar();
scanf("%c %c %c", &t[i].data, &cl, &cr);
if (cl != '-')
{
t[i].left = cl - '0';
check[t[i].left] = 1;
}
else
t[i].left = null;
if (cr != '-')
{
t[i].right = cr - '0';
check[t[i].right] = 1;
}
else
t[i].right = null;
}
//查找根
for (i = 0; i < n;i++)
if (!check[i]) break;
root = i;
}
return root;
}
int Isomorphism(int root1, int root2)
{
if (root1 == null&&root2 == null) return 1;
if (root1 == null&&root2 != null || root1 != null&&root2 == null)
return 0;
if (t1[root1].data != t2[root2].data)
return 0;
//经过了该判断,那么剩下的是根节点元素相同的了
if (t1[root1].left == null&&t2[root2].left == null)
return Isomorphism(t1[root1].right, t2[root2].right);
if (t1[root1].left != null&&t2[root2].left != null&&t1[t1[root1].left].data == t2[t2[root2].left].data)
//左孩子数据相同
return Isomorphism(t1[root1].left, t2[root2].left) && Isomorphism(t1[root1].right, t2[root2].right);
else
return Isomorphism(t1[root1].right, t2[root2].left) && Isomorphism(t1[root1].left, t2[root2].right);
}