手把手带你使用 Java 快速实现目标检测:支持 YOLO 和 SSD,开箱即用(附源码)

在计算机视觉领域,“目标检测”无疑是最炙手可热的技术之一。它被广泛应用于安防监控、自动驾驶、工业质检、智慧医疗等场景。但在 Java 圈,很多开发者往往因为深度学习主流生态以 Python 为主,望而却步。

其实,现在我们已经可以借助 SmartJavaAI 项目,通过 Java 快速接入目标检测能力。本文将手把手教你如何使用 SmartJavaAI 来实现目标识别功能,即使你没有深度学习基础,也能轻松上手!

一、什么是目标检测?

目标检测(Object Detection)是计算机视觉领域的一项核心任务,旨在识别图像或视频中的目标物体,并定位它们的位置(用矩形框表示)。典型应用场景包括:

  • 智能安防:检测入侵者、可疑行为
  • 自动驾驶:识别车辆、行人、交通标志
  • 工业质检:检测产品缺陷
  • 医疗影像:检测病灶区域

目前主流的检测算法包括:

  • YOLO(You Only Look Once):兼顾速度和精度
  • SSD(Single Shot MultiBox Detector):结构简单,推理快
  • Faster R-CNN:精度高,适合离线任务

效果展示


二、快速开始?

借助 SmartJavaAI 开源项目,你可以直接在 Java 中集成目标检测模型,无需自己处理复杂的深度学习框架。

环境要求:

  • JDK:11 或以上
  • 操作系统:Windows / Linux / macOS
  • Maven 引入jar包

1、Maven 引入依赖:

<dependency>
    <groupId>cn.smartjavaai</groupId>
    <artifactId>smartjavaai-objectdetection</artifactId>
    <version>1.0.12</version>
</dependency>

2、加载默认模型并检测:

DetectorModel detectorModel = ObjectDetectionModelFactory.getInstance().getModel();
DetectionResponse response = detectorModel.detect("example.jpg");

你也可以使用配置类加载其他模型:

DetectorModelConfig config = new DetectorModelConfig();
config.setModelEnum(DetectorModelEnum.SSD_300_RESNET50);
DetectorModel detectorModel = ObjectDetectionModelFactory.getInstance().getModel(config);

3、支持的目标检测模型

SSD 系列
模型名称骨干网络输入尺寸
训练数据集
精度(mAP)
推理速度
适用场景
SSD_300_RESNET50ResNet‑50300×300COCO中等精度需求一般
SSD_512_RESNET50_V1_VOCResNet‑50512×512Pascal VOC稍高中等精度优先、可接受略低速度的场景
SSD_512_VGG16_ATROUS_COCOVGG‑16512×512COCO较高中等通用场景;对小目标有一定提升
SSD_300_VGG16_ATROUS_VOCVGG‑16300×300Pascal VOC中等偏上VOC 数据集同类任务;资源受限时使用
SSD_512_MOBILENET1_VOCMobileNet‑1.0512×512Pascal VOC中等嵌入式/移动端设备;算力和内存都很有限
YOLO 系列
模型名称版本大小(Backbone)
数据集
精度
速度
适用场景
YOLO11Nv11极轻量COCO中等偏上极快与 v8n 类似,版本更新点在兼容性与 API
YOLOV8Nv8极轻量COCO中等偏上极快对实时性要求极高的应用
YOLOV5Sv5小型COCO较高非常快常见通用场景,算力资源有限时优选
YOLOV5S_ONNXRUNTIMEv5小型COCO较高加速(需 ONNX 支持)Windows/Linux 通用加速部署
YOLO (MXNet / 通用模型)v3DarkNet‑53COCO较高需要 MXNet 生态或复现老项目时使用
YOLOv3 变体系列
模型名称骨干网络
数据集
输入尺寸
精度
速度
适用场景
YOLO3_DARKNET_VOC_416DarkNet‑53VOC416×416中等VOC 任务复现;精度优先
YOLO3_DARKNET_COCO_320DarkNet‑53COCO320×320中等COCO 小模型测试;资源受限
YOLO3_DARKNET_COCO_416DarkNet‑53COCO416×416中等通用 COCO 部署;精度优先
YOLO3_DARKNET_COCO_608DarkNet‑53COCO608×608很高批量离线推理;精度要求极高
YOLO3_MOBILENET_VOC_320MobileNet‑V1VOC320×320中等非常快嵌入式设备;VOC 小目标任务
YOLO3_MOBILENET_VOC_416MobileNet‑V1VOC416×416移动端 VOC 部署
YOLO3_MOBILENET_COCO_320MobileNet‑V1COCO320×320中等非常快嵌入式设备;COCO 小目标任务
YOLO3_MOBILENET_COCO_416MobileNet‑V1COCO416×416移动端 COCO 部署
YOLO3_MOBILENET_COCO_608MobileNet‑V1COCO608×608很高中等对精度要求较高的移动端任务
DetectorModelConfig参数说明
字段名称字段类型默认值说明
modelEnumDetectorModelEnumYOLO11N目标检测模型枚举
thresholddouble0.5置信度阈值,分数低于这个值的结果将被过滤掉。值越高越严格,越低越宽松
deviceDeviceEnumCPU指定运行设备,支持 CPU/GPU

4、结果绘制与 API 简介

绘制检测结果:

detectorModel.detectAndDraw("input.jpg", "output.jpg");

返回结果结构(DetectionResponse):

{
    "detectionInfoList": [ //检测信息列表
        {
            "detectionRectangle": { //矩形框
                "height": 174, // 矩形高度
                "width": 147, // 矩形宽度
                "x": 275, // 左上角横坐标
                "y": 143 // 左上角纵坐标
            },
            "objectDetInfo": { //目标检测信息
                "className": "person" //类别
            },
            "score": 0.8118719 //检测结果置信度分数
        }
    ]
}

三、完整示例项目

项目地址:https://gitee.com/dengwenjie/SmartJavaAI/tree/master/examples
示例路径:src/main/java/smartai/examples/objectdetection/ObjectDetection.java


四、开源项目地址

🔗 Gitee 项目地址:https://gitee.com/dengwenjie/SmartJavaAI

🔗 GitHub 项目地址:https://github.com/geekwenjie/SmartJavaAI

🔗 GitCode 项目地址:https://gitcode.com/geekwenjie/SmartJavaAI

📖 在线文档地址:http://doc.smartjavaai.cn

【资源介绍】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业毕设项目,也可以作为小白实战演练初期项目立项演示的重要参考借鉴资料。 3、本资源作为“学习资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研多多调试实践。 基于JAVA(人脸检测,人证核验,目标识别) 封装的轻量级深度学习算法库(无需安装Python环境).zip 基于JAVA(人脸检测,人证核验,目标识别) 封装的轻量级深度学习算法库(无需安装Python环境).zip 基于JAVA(人脸检测,人证核验,目标识别) 封装的轻量级深度学习算法库(无需安装Python环境).zip 基于JAVA(人脸检测,人证核验,目标识别) 封装的轻量级深度学习算法库(无需安装Python环境).zip 基于JAVA(人脸检测,人证核验,目标识别) 封装的轻量级深度学习算法库(无需安装Python环境).zip 基于JAVA(人脸检测,人证核验,目标识别) 封装的轻量级深度学习算法库(无需安装Python环境).zip 基于JAVA(人脸检测,人证核验,目标识别) 封装的轻量级深度学习算法库(无需安装Python环境).zip 基于JAVA(人脸检测,人证核验,目标识别) 封装的轻量级深度学习算法库(无需安装Python环境).zip 基于JAVA(人脸检测,人证核验,目标识别) 封装的轻量级深度学习算法库(无需安装Python环境).zip 基于JAVA(人脸检测,人证核验,目标识别) 封装的轻量级深度学习算法库(无需安装Python环境).zip
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值