迷宫问题pascal程序

Description

设有一个n×n的方格迷宫,入口和出口分别在左上角和右上角(如图的示)

迷宫的格子分别放有0和1,0表示可通,1表示不能,迷宫走的规则如下图所示。

即从某点出发,可沿8个方向前进,前进方格中的数为0时表示可以通过,为1时表示不可以通过,如从入口开始,有2条路可以走,即向右走,或向右下角走,当迷宫给出后,找出一条从入口(1,1)到出口(1,8)的有多少条不同的中路径。

Input

Output

Sample Input

8
0 0 0 1 1 0 1 0
1 0 1 1 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 1 0 1 0 1
0 1 0 0 0 1 1 0
0 1 1 1 1 1 0 1
0 0 1 1 1 0 1 1
1 1 0 0 0 0 0 0

Sample Output

720



这题我是用搜索来做的

搜的时候,能走八个方向,如果下一个点能走就记录下来,继续搜。


var
n,x,y,s,t,i,j:longint;
a:array[0..1001,0..1001]of longint;
b:array[0..1001]of longint;
dx:array[1..8]of longint=(0,0,1,1,1,-1,-1,-1);
dy:array[1..8]of longint=(1,-1,0,1,-1,0,1,-1);
procedure search(x,y:longint);
var
i:longint;
begin
    if (x=1)and(y=n) then
    begin
        inc(t);
        exit;
    end else
    for i:=1 to 8 do
    if (a[x+dx[i],y+dy[i]]<>1)and(x+dx[i] in [1..n])and(y+dy[i] in [1..n]) then
    begin
        a[x+dx[i],y+dy[i]]:=1;
        search(x+dx[i],y+dy[i]);
        a[x+dx[i],y+dy[i]]:=0;
    end;
end;

begin
    readln(n);
    for i:=1 to n do
    begin
        for j:=1 to n do
        read(a[i,j]);
        readln;
    end;
    s:=0;t:=0;
    a[1,1]:=1;
    search(1,1);
    write(t);
end.



转载于:https://www.cnblogs.com/YYC-0304/p/9500241.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
问题描述: 以一个m*n的长方阵表示迷宫,0和1分别表示迷宫中的通路和障碍。设计一个程序,对任意设定的迷宫,求出从入口(0,0)到出口(m-1,n-1)的通路和通路总数,或得出没有通路的结论。例如下图, 0(入口) 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0(出口) 从入口到出口有6条不同的通路。 而下图: 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 从入口到出口则没有通路。 算法设计: 给定一个m*n的长方阵表示迷宫,设计算法输出入口到出口的通路和通路总数,或得出没有通路的结论。 算法提示: 和皇后问题与分书问题类似。可以用二维数组存储迷宫数据,对于迷宫中任一位置,均可约定有东、南、西、北四个方向可通。从当前位置a(用(x,y)表示一个位置,假定它是以向右的x轴和向下的y轴组成的平面上的一个点)出发依次尝试四个方向是否有路,若某个方向的位置b可通,则按照同样的方法继续从b出发寻找。若到达出口,则找到一条通路。 数据输入: 由文件input.txt 提供输入数据。第一行是m和n的值,空格分隔,其后共m行。每行有n个数字,数和数之间用空格分隔。 结果输出: 将计算出的所有从入口到出口的通路输出到文件output.txt 中。若没有通路,则将0写入文件中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值