一道很简单的区间DP~~
简化的~~
原版是山东省省队选拔赛的题(数据范围很大我还不会)
所以只能捡一个简单的了
【问题描述】
在一个操场上摆放着一行共n堆的石子。现要将石子有序地合并成一堆。规定每次只能选相邻的两堆合并成新的一堆,并将新的一堆石子数记为该次合并的得分。请编辑计算出将n堆石子合并成一堆的最小得分和将n堆石子合并成一堆的最大得分。
【输入文件】
输入第一行为n(n<1000),表示有n堆石子,第二行为n个用空格隔开的整数,依次表示这n堆石子的石子数量(<=1000)
【输出文件】
输出将n堆石子合并成一堆的最小得分和将n堆石子合并成一堆的最大得分。
【输入样例】
3
1 2 3
【输出样例】
9 11
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 1000+10;
const int INF = 2147483647;
int A[maxn],num[maxn];
int da[maxn][maxn] = {0};
int di[maxn][maxn] = {0};
int N;
int main()
{
cin >> N;
num[0] = 0;
for(int i = 1 ; i <= N ; i++ )
{
cin >> A[i];
num[i] = A[i] + num[i-1];
}
for(int L = 1 ; L < N ; L++ )
for(int i = 1 ; i <= N-L ; i++ )
{
int j = i+L;
da[i][j] = 0;
di[i][j] = INF;
for(int k = i ; k < j ; k++ )
{
da[i][j] = max(da[i][j],da[i][k]+da[k+1][j]+num[j]-num[i-1]);
di[i][j] = min(di[i][j],di[i][k]+di[k+1][j]+num[j]-num[i-1]);
}
}
cout << di[1][N] << " " << da[1][N];
return 0;
}
本文介绍了如何使用区间动态规划(DP)解决一个关于石子合并的问题,目标是找到将多堆石子合并成一堆的最小和最大得分。题目源自山东省省队选拔赛,简化后数据范围较小,适合初学者练习。
1228

被折叠的 条评论
为什么被折叠?



