poj 1738 石子合并(区间DP)

本文介绍了如何使用区间动态规划(DP)解决一个关于石子合并的问题,目标是找到将多堆石子合并成一堆的最小和最大得分。题目源自山东省省队选拔赛,简化后数据范围较小,适合初学者练习。

一道很简单的区间DP~~

简化的~~

原版是山东省省队选拔赛的题(数据范围很大我还不会)

所以只能捡一个简单的了

【问题描述】

在一个操场上摆放着一行共n堆的石子。现要将石子有序地合并成一堆。规定每次只能选相邻的两堆合并成新的一堆,并将新的一堆石子数记为该次合并的得分。请编辑计算出将n堆石子合并成一堆的最小得分和将n堆石子合并成一堆的最大得分。

【输入文件】

输入第一行为n(n<1000),表示有n堆石子,第二行为n个用空格隔开的整数,依次表示这n堆石子的石子数量(<=1000)

【输出文件】

输出将n堆石子合并成一堆的最小得分和将n堆石子合并成一堆的最大得分。

【输入样例】

3

1 2 3

【输出样例】

9 11

#include<iostream>
#include<algorithm>
using namespace std;

const int maxn = 1000+10;
const int INF = 2147483647;

int A[maxn],num[maxn];
int da[maxn][maxn] = {0};
int di[maxn][maxn] = {0};

int N;

int main()
{
    cin >> N;
    num[0] = 0;
    for(int i = 1 ; i <= N ; i++ )
    {
        cin >> A[i];
        num[i] = A[i] + num[i-1];
    }
    for(int L = 1 ; L  < N ; L++ )
        for(int i = 1 ; i <= N-L ; i++ )
        {
            int j = i+L;
            da[i][j] = 0;
            di[i][j] = INF;
            for(int k = i ; k < j ; k++ )
            {
                da[i][j] = max(da[i][j],da[i][k]+da[k+1][j]+num[j]-num[i-1]);
                di[i][j] = min(di[i][j],di[i][k]+di[k+1][j]+num[j]-num[i-1]); 
            }
        }
    cout << di[1][N] << " " << da[1][N];
    return 0;

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值