Numpy中数组或矩阵乘法总结

matrix是array的一个小的分支,包含于array。所以matrix 拥有array的所有特性
array可表示1~n维的数据,matrix只能表示二维数据;
两者可以通过命令np.asmatrix()和np.asarray()进行转换

乘法包括两种:对应元素相乘和矩阵相乘

总结

对应元素相乘(element-wise product):np.multiply()
矩阵相乘(和线性代数中的定义一样):np.dot(a,b) 或 np.matmul(a,b) 或a.dot(b) 或a @ b
对特殊符号“*”:*在numpy.ndarray数据中表示对应元素相乘,在numpy.matrix数据中表示矩阵相乘

对应元素相乘(element-wise product)

import numpy as np

a = np.array([[1,2],[5,6]])  # 数组
b = np.array([[2,3],[3,4]])
print('a*b:\n'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值