matlab
一千种风的味道
这个作者很懒,什么都没留下…
展开
-
matlab——使用plot()对图像进行处理之后将图像保存在本地
在使用MATLAB过程中,我们往往需要再图像上使用plot()函数画一些东西,然后将其显示的figure中,但要将plot()处理后的图像保存的本地,有一定难度。以下介绍两种方法:将figure进行保存我们使用figure显示图像,然后使用hold on 和hold off命令,使用plot函数在图像上绘制自己的需求img = imread('a.png');figure;imshow(img); % binary image[m,n] = find(image==1);[xrect,yrect原创 2021-07-30 11:44:30 · 7968 阅读 · 1 评论 -
数字图像处理——第十一章(表示和描述)
将一幅图像分割成多个区域后,分割后的像素集经常以一种合适于计算机进一步处理的形式来表示和描述。表示表示一个区域的两种选择:根据区域外部特征(如边界)来表示区域-根据内部特征(如组成该区域的像素)来表示区域表示是直接具体地表示目标,好的表示方法应具有节省存储空间易于特征计算等优点。表示的下一步工作是描述。表示方式的选择要使数据有利于描述工作的展开。当关注的重点是形状特征时,可选择外部表示;当关注的重点是内部属性(如颜色和纹理)时,可选择内部表示。描述描述是较抽象地表示目标。好的描绘子都应原创 2020-06-24 22:17:53 · 8074 阅读 · 1 评论 -
数字图像处理——第十章(图像分割)
形态学图像处理中,输入的是图像,输出的是从图像中提取出来的属性,分割是该方向上的另一步骤。分割将图像细分为构成它的子区域或物体。细分的程度取决于要解决的问题。当感兴趣的物体或区域已经被检测出来了,那就停止分割。单色图像的分割算法通常基于灰度值的两个基本性质:不连续性和相似性。第一种是以灰度变换(即灰度的突变)为基础分割图像,如边缘检测;第二种是根据事先预定义的相似性准则把图像分成相似的区域,如阈值分割、区域生长。图像分割的数学描述令R表示一幅图像占据的整个空间区域。将图像分割视为把R分为n个子区域R原创 2020-06-15 12:27:20 · 13691 阅读 · 0 评论 -
数字图像处理——第九章(形态学图像处理)
形态学,即数学形态学,主要应用是从图像中提取对于表达和描绘区域形状有意义的图像分量,使后续的识别工作能抓住目标对象最为本质(最具区分能力)的形状特征,如边界、骨架和连通区域等;同时细化、像素化和修建毛刺等技术也常常应用于图像的预处理和后处理中,成为图像增强技术的有力补充。一、预备知识数学形态学的语言是集合论。在数字图像处理的形态学运算中,常把一幅图像或者图像中一个我们感兴趣的区域称为集合,用大写字母A、B、C、D等表示;元素常指一个单个像素。用该像素在图像中的整型位置坐标z = (z1,z2)来表示。原创 2020-06-08 22:16:06 · 28892 阅读 · 4 评论 -
数字图像处理——第七章(小波变换和多分辨率处理)
所谓的小波的小是针对傅里叶波而言,傅里叶波指的是在时域空间无穷震荡的正弦(或余弦波)。“小波”(wavelet)是一种“尺度”很小的波动,并具有时间和频率特性。小波函数必须满足以下两个条件:(1)小波必须是振荡的;(2)小波是能量在时域非常集中的波,它的能量有限,都集中在某一点附近,即振幅只能在一个很短的一段区间上非0,即是局部化的,且积分的值为零。如下图所示傅里叶变换和小波变换的区别:■傅里叶变换:基础函数是正弦(或余弦)函数。反映的是图像的整体特征, 其频域分析具有很好的局部性,但空间(原创 2020-06-04 13:11:51 · 14580 阅读 · 1 评论 -
matlab杂记
优化matlab中带有for循环的代码对需要在for循环中使用的变量进行预分配内存。可以使用zeros和ones函数给数值型数组分配空间,使用cell函数给单元数组分配空间,使用struct给结构体分配空间。示例:clear all;clc;ticy(1) = 1;for i = 1 : 100000 y(i + 1) = i * 10 + 0.9986 * y(i)endtoc对变量进行预分配内存clear all;clc;ticy = zeros(1,100000)原创 2020-06-04 09:35:44 · 288 阅读 · 0 评论 -
matlab绘图
matlab绘图(详细)转载 2020-06-03 18:08:56 · 202 阅读 · 0 评论 -
matlab——GUI界面设计的相关问题
前几天导师让我使用GUI做一个用户界面,学习了一段时间的matlab,但还没有使用过GUI,花了半天的时间补了补课,然后边做边查,这里对我之前不懂的东西做一个总结和记录。其中很多只是我个人的理解,如有不足或错误,欢迎批评指正。说明:我使用的matlab版本为19aGUI是什么G=graphic图形, U=user用户, I=interface界面。故GUI就是对用程序编写系统的一个可视化的呈现,通过在GUI中点击/编辑不同的控件(如按钮,下拉框,单选框,复选框等等),可以实现一定的功能,从而让用户快速原创 2020-05-29 12:34:41 · 2515 阅读 · 0 评论 -
MATLAB中accumarray函数详解
先看看subs和val的具体内容subs = [1 1 1; 2 1 2; 2 3 2; 2 1 2; 2 3 2];subs =1 1 12 1 22 3 22 1 22 3 2val = (101:105)’val =101102103104105val的元素个数与subs的行数是一致...转载 2020-05-03 20:49:52 · 1104 阅读 · 0 评论 -
matlab图像处理相关函数
colorbar 显示彩条getimage 由坐标轴得到图像数据ice(DIPUM) 交互彩色编辑image 创建和显示图像对象imagesc 缩放数据并显示为图像immovie 由多帧图像制作电影imshow 显示图像imview 在Image Viewer中显示图像montag...转载 2020-05-03 20:41:08 · 2092 阅读 · 0 评论 -
matlab命令(偏数学和检验)
基本统计量:均值:mean(x) 中位数median(x) 标准差std(x)方差:var(x) 偏度skewness(x) 峰度kurtosis(x)常见的概率分布函数正态分布:norm 指数分布:exp 泊松分布:poissbeta分布:beta 威布尔分布:weib kafang分布:chi2t分布:t ...转载 2020-05-03 20:37:10 · 1356 阅读 · 0 评论 -
数字图像处理——第六章(彩色图像处理)
彩色基础颜色是人类认知系统对物体表面、光照及视觉环境的综合反映,缺少其中任意一个,都不会有颜色感觉。人类和其他动物感知物体颜色是由物体反射光的性质(频率和波长)决定的。白色:物体反射的光在所有可见光波长范围是平衡的。某种颜色:一个物体反射有限的可见光谱。(如,绿色物体反射具有500~570nm范围内的主要波长的光,吸收其他波长的多数能量)彩色彩色是物体的一种属性。依赖于3个方面的因素:...原创 2020-04-27 15:20:00 · 21173 阅读 · 1 评论 -
数字图像处理——第五章(图像复原与重建)
一、图像退化与复原1.1 概念退化:成像过程中的“退化”是指由于成像系统各种因素的影响,使得图像质量降低。如,图像的模糊、有外界干扰等。引起图像退化的原因:成像系统的散焦成像设备与物体的相对运动成像器材的固有缺陷外部干扰等图像复原:是图像退化的逆过程。以预先确定的目标来改善图像。是一个客观过程。试图利用退化线性的某种先验知识来复原被退化的图像。换句话说,复原的过程为:找图像退化...原创 2020-04-15 17:07:58 · 9247 阅读 · 4 评论 -
数字图像处理——第四章(频率域滤波)
本章主要介绍傅里叶变换的基本原理,并在基本的图像滤波中使用傅里叶变换。很多情况下,频率域滤波和空间域滤波可视为对于同一图像增强问题的殊途同归的两种解决方式。一些在空间域困难的增强任务,在频率域中变得非常普通。傅里叶级数:任何周期函数可表示为不同频域的正弦和/或余弦之和的形式,每个正弦项和/或余弦项乘以不同的系数,这个和的形式称为傅里叶级数。傅里叶变换:非周期函数(但该曲线下的面积是有限的)也...原创 2020-03-28 14:51:46 · 12470 阅读 · 0 评论 -
matlab——imread()和imshow()
imread()函数使用格式:A = imread(filename) %从 filename 指定的文件读取图像,并从文件内容推断出其格式。如果 filename 为多图像文件,则 imread 读取该文件中的第一个图像。A = imread(filename,fmt) %另外还指定具有 fmt 指示的标准文件扩展名的文件的格式。如果 imread 找不到具有 filename 指定...原创 2020-03-22 10:39:45 · 2978 阅读 · 0 评论 -
数字图像处理——第三章(灰度变换与空间滤波(空间域))
本章主要在空间域对图像及像素进行处理。空间域的处理分为灰度变换和空间滤波。灰度变换是对图像的单个像素进行操作,主要以对比度和阈值处理为目的。空间滤波涉及改善性能的操作。一、背景知识...原创 2020-02-29 20:32:21 · 7719 阅读 · 0 评论 -
matlab——imadjust函数
作用:对进行图像的灰度变换,即调节灰度图像的亮度或彩色图像的颜色矩阵。格式:g = imadjust(f,[low_in; high_in],[low_out; high_out])将图像I中的亮度值映射到J中的新值。即将low_in至high_in之间的值映射到low_out至high_out之间的值。low_in 以下与 high_in 以上的值被剪切掉了,即低于low_in的作为...原创 2020-02-26 20:16:32 · 7863 阅读 · 0 评论 -
matlab——uint8、im2uint8、double、im2double和mat2gray的说明
参考:https://blog.csdn.net/FX677588/article/details/533017401、图像在matlab中的保存matlab读取图片后保存的数据是uint8类型(8位无符号整数,即1个字节),以此方式存储的图像称作8位图像,比double型(64位,8个字节),节省了存储空间。**imread()**是将灰度图像存入一个8位矩阵;若为RGB图像时,就存入8位...原创 2020-02-24 20:12:32 · 4021 阅读 · 1 评论 -
matlab——imhist和histeq函数
imhist函数目的:获取图像的灰度直方图。用法:imhist( img );直接显示图像img的灰度直方图;imhist(img,n);显示一个统计n个灰度级信息的直方图;[counts, x] = imhist( img ) ;获取直方图信息,x为灰度级向量(一维),记录着图像中灰度的所有值,而counts也是一个向量(一维),里面记录着x中对应灰度值出现的个数。注:imhist只...原创 2020-02-21 20:27:05 · 7295 阅读 · 2 评论 -
数字图像处理——第一章(绪论)
数字图像处理的主要目的改善图示信息以便人们解释为存储、传输和表示而对图像进行处理,便于机器自动理解数字图像及其处理数字图像定义一幅图像可定义为一个二维函数f(x,y),其中x,y为坐标,f为任一坐标处的幅值,用来表示图像在该坐标点处的强度或灰度。当x,y和灰度值f是有限的离散数值时,称图像为数字图像。借助数字计算机来处理数字图像称为数字图像处理。数字图像分类二值图像:每个像素...原创 2020-02-03 13:56:44 · 2332 阅读 · 1 评论 -
常见的测试函数
测试函数经常用来测试优化算法的性能,根据函数的物理性质和形状将测试函数进行简单的分类。并使用matlab或R语言进行实现。具体的见 http://www.sfu.ca/~ssurjano/optimization.html也可看看 https://blog.csdn.net/jiang425776024/article/details/87358300局部极值Ackley Function...转载 2019-11-14 19:54:21 · 10085 阅读 · 3 评论 -
matlab——伪随机数生成
rand(m)用于生成m行m列均匀分布在(0,1)之间的伪随机数实现>> rand(5)ans = 0.8147 0.0975 0.1576 0.1419 0.6557 0.9058 0.2785 0.9706 0.4218 0.0357 0.1270 0.5469 0.9572 0....原创 2019-11-13 19:50:32 · 5317 阅读 · 0 评论 -
matlab——取整函数
floor 向下取整(向负无穷方向取整)>> x = 2.3;>> floor(x)ans = 2round 四舍五入取整(取最接近的整数)>> x = 5.67;>> round(x)ans = 6ceil 向上取整(向正无穷方向取整)>> x = 3.12;>> cei...原创 2019-10-20 17:36:02 · 598 阅读 · 0 评论 -
matlab——for循环
简单for循环for循环用来循环处理数据。例:输出1~100的和>> clear>> sum = 0;>> for i = 1:100 sum = sum +i; end>> sumsum = 5050解释:i从1到100,每次增加一个,该共循环100次注意:分号的位置;不能使用“+=”符号...原创 2019-10-20 16:42:21 · 476209 阅读 · 14 评论 -
matlab——zeros函数
#matlab——zeros函数##功能zeros函数用于创建一个全零的数组或矩阵##语法B = zeros(n)B = zeros(m,n)B = zeros(m,n)B = zeros(d1,d2,d3…)B = zeros([d1 d2 d3…])B = zeros(size(A))zeros(m, n,…,classname)zeros([m,n,…],classna...原创 2019-10-20 14:35:03 · 19922 阅读 · 0 评论