面试题8答案

本文介绍了如何通过批量处理技术,将大量文本数据划分为更小、更易于管理的部分,利用哈希映射进行词频统计,并最终筛选出高频词汇进行归并与排序。这一过程涉及了数据切分、哈希映射、词频统计等关键步骤,旨在提高文本数据处理的效率与准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       1)顺序读取文件,对其中每个词x,计算hash(x)%5000,根据得到的hash值我们可以将词存入到5000个小文件中(记为),如果其中有文件的大小大于1M,则继续按相同的方法进行切分。直到所有的小文件的大小都小于1M。

       2)对于每个小文件,使用hash_map统计其中出现的每个词以及其出现的频率,然后挑选出出现频率最大的前100个词,并将该100个词及其相应的频率存入新的文件中。

       3)这样能得到5000个新的文件,然后将这5000个新的文件根据词对词频进行归并,再排序,挑选出词频最大的前100个词。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值