Python全栈开发【补充:线程池】

本文介绍Python中使用线程池和进程池进行并发编程的方法,通过实例展示了如何利用ThreadPoolExecutor和ProcessPoolExecutor来提高程序的执行效率。文章提供了具体的代码示例,包括任务函数的定义和线程池、进程池的实例化与使用。
摘要由CSDN通过智能技术生成

Python中线程池与进程池实现并发应用

# 线程池需要导入的模块
from concurrent.futures import ThreadPoolExecutor
# 进程池需要导入的模块
from concurrent.futures import ProcessPoolExecutor
import time
# 测试函数
def task(arg):
    print(arg)
    time.sleep(1)
# 实例化线程池对象,最大并发数为10
pool=ThreadPoolExecutor(10)
#pool.submit  参数为函数及所传参数 
for i in range(100):
    pool.submit(task,i)

  

转载于:https://www.cnblogs.com/mocean/p/6714178.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值