8.进入线性代数的奇妙世界:向量的乘法之点积

    向量的点积又称为点乘、内积,计算起来还是简单,但是一定要深刻理解其背后的几何意义,并进一步学会应用。那就先来看怎么计算。

    向量的点积用运算符“·”,计算的结果两个向量对应位置的维度值相乘再求和。计算公式如下:

     怎么理解∑(念“希格码”)这个运算符号呢?这个运算符号表示求和,下标表示求和表达式中变量的起始值,上标表示求和表达式中变量的结束值,这个变量也可以是求和表达式中的元素下标、上标。如:

    从向量点积的计算公式来看,计算结果是一个值,即一个标量,并不是一个向量。怎么就成了标量了呢?来看图8-1.

​​​​​​​

 

图8-1 向量的点积运算

       不论在多少维空间下,以下向量点积计算的公式均成立:

 

       公式中,| | 表示模。从图8-1可以看出,可以是向量a 在向量b 上的投影acosθ 再乘以向量b 的模|b| ,也可以是向量b 在向量a 上的投影bcosθ 再乘以向量a 的模|a|

       问题是点积的结果怎么就变成了abcosθ 了呢?来看向量的减法的图形,如图8-2所示。

图8-2 推导点积计算公式用到的向量三角形

       根据余弦定理,有:

       以二维向量空间中的计算为例,假定a=a1,a2b=b1,b2 ,则有:

​​​​​​​

       因此,可以得到:

        从而,得到:

       上述推导过程,在任意维向量空间中均适用。

       下一节再来接着讲讲怎么应用向量的点积。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

computersciencer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值