IT人必懂的数学-线性代数
文章平均质量分 52
用通俗的语言讲解线性代数
computersciencer
计算机科学爱好者,喜欢数学、人工智能、大数据,以及Java编程、Python编程,软件工程等领域。爱好创作、交朋友、教书育人,已著有图书20余册,论文120余篇。
展开
-
我的图书《深入浅出线性代数》
已经写了8篇连载了,写的其实就是我今年出版的图书《深入浅出线性代数》中的内容。不为别的,就只想让线性代数变得浅显易懂,在数学的严谨和易懂之间找到一个微妙的平衡,让大家都喜欢上数学这门学科。 下面分享图书的封面和前言。《深入浅出线性代数》前言: 我从事计算机软件开发、大数据技术的研究十几年了,通过与很多朋友的交流及自身的不断学习发现,做研究、做开发所有的底层实现还是数学,于是我经常回翻攻读本硕博时的数学教材。尽管自认为数学底子尚可,还能看懂满...原创 2021-07-27 21:01:45 · 896 阅读 · 5 评论 -
8.进入线性代数的奇妙世界:向量的乘法之点积
向量的点积又称为点乘、内积,计算起来还是简单,但是一定要深刻理解其背后的几何意义,并进一步学会应用。那就先来看怎么计算。 向量的点积用运算符“·”,计算的结果两个向量对应位置的维度值相乘再求和。计算公式如下: 怎么理解∑(念“希格码”)这个运算符号呢?这个运算符号表示求和,下标表示求和表达式中变量的起始值,上标表示求和表达式中变量的结束值,这个变量也可以是求和表达式中的元素下标、上标。如: 从向量点积的计算公式来看,计算结果是一个值,即一个标量,并不是一个...原创 2021-07-18 23:20:01 · 617 阅读 · 0 评论 -
7.进入线性代数的奇妙世界:向量的乘法之数乘
向量的乘法有3种,一是数乘,二是点积,三是叉积。听起来名称有点陌生,别急,接下来一一道来,先讲数乘。 数乘,就是用数字乘以一个向量,或用向量乘以一个数字,两者之间结果相同。类似的,向量的加法和减法中,也可以用向量和一个数字来进行运算。 如果是数字与向量相加,则将向量中每一维的值均与这个数字相加,减法亦为这样运算。结果向量与原向量的关系是:向量的每个维度的值都同时增加或减少了某个值。如:1+[1,2,3]=[1+1,1+2,1+3]=[2,3,4]1-[1,2,3]=[1-...原创 2021-07-07 11:16:10 · 2265 阅读 · 0 评论 -
6.进入线性代数的奇妙世界:向量的减法
两个向量相减,结果仍然是一个向量。那么在图形上,结果是怎样的一个向量呢?这个结果向量是两个向量组成的平行四边形的另外一条对角线。 向量减法的计算规则就是将两个向量对应维度的值相减。假定 , ,则向量的减法运算如下: 仍然使用上节中的例子中的向量a 和向量b : , ,则: 减法计算的图示如图6-1所示。结合上述计算过程及图6-1,可以理解为将向量b 先反向,再相加,结果是处于x 轴上的向量[-2,...原创 2021-06-28 14:50:50 · 4261 阅读 · 0 评论 -
5.进入线性代数的奇妙世界:向量的加法
向量之间可以做加法、减法、乘法运算,向量还可以对数字做加法、减法、数乘、数除。学会怎么计算是比较容易的,关键是要弄懂计算背后的几何意义,特别是在空间是向量做了些什么变化。 先来看向量之间的加法。 向量之间要能做加法,则两个向量的维数要相同。想想看,一个处在二维空间中的向量自然不能与一个处于三维空间中的向量来做加法。如果同处在相同维数的空间里,也就可以做加法了。后面还要讲解的减法、乘法都是如此。 向量的加法就是将向量对应维度的值相加。假定 , ,则向量的加法运...原创 2021-06-27 16:25:12 · 2145 阅读 · 1 评论 -
4.进入线性代数的奇妙世界:用向量表示数据
向量可以说是线性代数这门学科最为基础的知识,但IT人要明白的知道用他可以来干什么。向量的用处十分广泛,最为基础的应用就是用来表示数据。要做大数据分析、人工智能算法应用,首先要做的就是要有足够的数据用于分析。 存储数据有很多办法,我们称之为持久化。可以存在txt文件、Excel文件中,也可以存在数据库表中。存储的数据一般遵循一定的数据结构,以用于组织数据,目前最为流行的仍然是关系型数据。关系型数据的基础数据表示就像一张二维的表格。举个最为简单的业务场景,对某单位的客户信息数据做数据分析。存储...原创 2021-06-26 07:52:49 · 466 阅读 · 0 评论 -
3.进入线性代数的奇妙世界:用图形来表示向量
正在写作中。原创 2021-06-25 08:33:01 · 1937 阅读 · 0 评论 -
2.进入线性代数的奇妙世界:理解向量
从前述给出的线性代数的定义来看,向量是一个核心的概念。那什么是向量呢?上初中、高中、大学都学到过这一概念。很多人总觉得似懂非懂,或者懂了又不会用。下面就彻底弄懂这个概念。 向量,顾名思义就是指的有方向的量。现实生活中有很多向量,只是在不同的学科中可能称呼不同,如,在物理学的力学中,称力为矢量,因为力既有大小、又有方向。 那怎么表示向量呢?各种书上的表示方法不同,但是懂的人一看就明白。 向量有符号表示法和图形表示法2种。用符号表示法时,用粗写的字母、带箭头的单字母、带箭...原创 2021-06-24 11:43:39 · 409 阅读 · 0 评论 -
1.进入线性代数的奇妙世界:长期挨踢的IT人怎么定义线性代数
很自然的想到,什么是线性代数?这门学科研究些什么?IT人长期以来最注重的就是要实用。如果要做数学专家,那是另外一码事,因为数学家的世界和IT人会有所不同。IT人,读“挨踢”人,长期在做项目时挨人踢,挨甲方踢——做个系统怎么老做不完,需求老弄不明白 ;挨业务部门踢——服务老跟不上。被踢多了,IT一般都比较老实,从此更注重实用。 想要不挨踢,就得自身硬,多学知识,本领盘身。 线性代数为什么叫线性代数呢?我的思考是因为这门数学的分支学科中用到的最多的概念就是向量,向量在空间中表现为一条...原创 2021-06-24 09:09:05 · 188 阅读 · 0 评论 -
0.立志为IT人写下线性代数的奇妙篇章
做程序员十几年了,研究大数据、人工智能,以及做软件开发,做到深处越来越感觉数学的重要性,总要不断的补充数学的知识。理来理去,还是微积分、线性代数、概率论这3篇是核心的知识。这里打算先写写线性代数这一篇。 遗憾的是,市面上线性代数的图书让人一看就头晕,满板的符号和公式。于是我立志为IT人写写线性代数,力图展现数学的奇妙和有趣的世界。不求点赞,只求讨论和拍砖。我计划会用奇妙的空间思维的思路来写作,相信一定会给从事IT工作的您新鲜感,而且一定能看得懂。如果没看懂,请告诉我,我再思考怎么调整、改进...原创 2021-06-24 08:44:34 · 243 阅读 · 0 评论