1050 螺旋矩阵 (25分)
本题要求将给定的 N 个正整数按非递增的顺序,填入“螺旋矩阵”。所谓“螺旋矩阵”,是指从左上角第 1 个格子开始,按顺时针螺旋方向填充。要求矩阵的规模为 m 行 n 列,满足条件:m×n 等于 N;m≥n;且 m−n 取所有可能值中的最小值。
输入格式:
输入在第 1 行中给出一个正整数 N,第 2 行给出 N 个待填充的正整数。所有数字不超过 10^4,相邻数字以空格分隔。
输出格式:
输出螺旋矩阵。每行 n 个数字,共 m 行。相邻数字以 1 个空格分隔,行末不得有多余空格。
输入样例:
12
37 76 20 98 76 42 53 95 60 81 58 93
输出样例:
98 95 93
42 37 81
53 20 76
58 60 76
分析:
首先计算行数m和列数n的值,n从根号N的整数部分开始,往前推一直到1,找到第一个满足N % n== 0的,m的值等于N/n;
填充时按层数填充,一个包裹矩阵的口字型为一层,计算螺旋矩阵的层数level,如果m的值为偶数,层数为m/2,如果m为奇数,层数为m/2+1,所以level = m / 2 + m % 2;因为是从左上角第1个格子开始,按顺时针螺旋方向填充,所以外层for循环控制层数i从0到level,内层for循环按左上到右上、右上到右下、右下到左下、左下到左上的顺序一层层填充,注意内层for循环中还要控制t <= N – 1,因为如果螺旋矩阵中所有的元素已经都填充完毕,就不能再重复填充
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
int cmp(int a, int b) {return a > b;}
int main() {
int N, m, n, t = 0;
scanf("%d", &N);
for (n = sqrt((double)N); n >= 1; n--) {
if (N % n == 0) {
m = N / n;
break;
}
}
vector<int> a(N);
for (int i = 0; i < N; i++)
scanf("%d", &a[i]);
sort(a.begin(), a.end(), cmp);
vector<vector<int> > b(m, vector<int>(n));
int level = m / 2 + m % 2;
for (int i = 0; i < level; i++) {
for (int j = i; j <= n - 1 - i && t <= N - 1; j++)
b[i][j] = a[t++];
for (int j = i + 1; j <= m - 2 - i && t <= N - 1; j++)
b[j][n - 1 - i] = a[t++];
for (int j = n - i - 1; j >= i && t <= N - 1; j--)
b[m - 1 - i][j] = a[t++];
for (int j = m - 2 - i; j >= i + 1 && t <= N - 1; j--)
b[j][i] = a[t++];
}
for (int i = 0; i < m; i++) {
for (int j = 0 ; j < n; j++) {
printf("%d", b[i][j]);
if (j != n - 1) printf(" ");
}
printf("\n");
}
return 0;
}