位运算 之按位与(AND)& 操作

由于位运算直接对内存数据进行操作,不需要转成十进制,因此处理速度非常快。

 

按位与(Bitwise AND),运算符号为&

a&b 的操作的结果:a、b中对应位同时为1,则对应结果位也为1、

例如:

10010001101000101011001111000

&             111111100000000  

---------------------------------------------

                                   10101100000000

对10101100000000进行右移8位得到的是101011,这就得到了a的8~15位的掩码了。那么根据这个启示,判断一个整数是否是处于 0-65535 之间(常用的越界判断):

用一般的 (a >= 0) && (a <= 65535) 可能要两次判断。

改用位运算只要一次:

a & ~((1 << 16)-1)

后面的常数是编译时就算好了的。其实只要算一次逻辑与就行了。

 

             

常用技巧:

 

1、  用于整数的奇偶性判断

 

一个整数a, a & 1 这个表达式可以用来判断a的奇偶性。二进制的末位为0表示偶数,最末位为1表示奇数。使用a%2来判断奇偶性和a & 1是一样的作用,但是a & 1要快好多。

 

2、  判断n是否是2的正整数冪

 

(!(n&(n-1)) ) && n

 

举个例子:                                               

如果n = 16 = 10000, n-1 = 1111

那么:

10000

& 1111

----------

                          0

再举一个例子:如果n = 256 = 100000000, n-1 = 11111111

那么:

100000000

&11111111

--------------

        0

好!看完上面的两个小例子,相信大家都有一个感性的认识。从理论上讲,如果一个数a他是2的正整数幂,那么a 的二进制形式必定为1000…..(后面有0个或者多个0),那么结论就很显然了。

 

3、  统计n1的个数

 

朴素的统计办法是:先判断n的奇偶性,为奇数时计数器增加1,然后将n右移一位,重复上面步骤,直到移位完毕。

朴素的统计办法是比较简单的,那么我们来看看比较高级的办法。

 

举例说明,考虑2位整数 n=11,里边有2个1,先提取里边的偶数位10,奇数位01,把偶数位右移1位,然后与奇数位相加,因为每对奇偶位相加的和不会超过“两位”,所以结果中每两位保存着数n中1的个数;相应的如果n是四位整数 n=0111,先以“一位”为单位做奇偶位提取,然后偶数位移位(右移1位),相加;再以“两位”为单位做奇偶提取,偶数位移位(这时就需要移2位),相加,因为此时没对奇偶位的和不会超过“四位”,所以结果中保存着n中1的个数,依次类推可以得出更多位n的算法。整个思想类似分治法。
在这里就顺便说一下常用的二进制数:

0xAAAAAAAA=10101010101010101010101010101010

0x55555555 = 1010101010101010101010101010101(奇数位为1,以1位为单位提取奇偶位)

 

0xCCCCCCCC = 11001100110011001100110011001100

0x33333333 =    110011001100110011001100110011(以“2位”为单位提取奇偶位)

 

0xF0F0F0F0 = 11110000111100001111000011110000

0x0F0F0F0F =     1111000011110000111100001111(以“8位”为单位提取奇偶位)

 

0xFFFF0000 =11111111111111110000000000000000               

0x0000FFFF =                 1111111111111111(以“16位”为单位提取奇偶位)

 

例如:32位无符号数的1的个数可以这样数:

 

复制代码
int count_one(unsigned  long n)
{
     // 0xAAAAAAAA,0x55555555分别是以“1位”为单位提取奇偶位
    n = ((n &  0xAAAAAAAA) >>  1) + (n &  0x55555555);

     // 0xCCCCCCCC,0x33333333分别是以“2位”为单位提取奇偶位
    n = ((n &  0xCCCCCCCC) >>  2) + (n &  0x33333333);

     // 0xF0F0F0F0,0x0F0F0F0F分别是以“4位”为单位提取奇偶位
    n = ((n &  0xF0F0F0F0) >>  4) + (n &  0x0F0F0F0F);

     // 0xFF00FF00,0x00FF00FF分别是以“8位”为单位提取奇偶位
    n = ((n &  0xFF00FF00) >>  8) + (n &  0x00FF00FF);

     // 0xFFFF0000,0x0000FFFF分别是以“16位”为单位提取奇偶位
    n = ((n &  0xFFFF0000) >>  16) + (n &  0x0000FFFF);

     return n;
}
复制代码

 

  

举个例子吧,比如说我的生日是农历2月11,就用211吧,转成二进制:

                     n = 11010011

计算n = ((n & 0xAAAAAAAA) >> 1) + (n & 0x55555555);

得到              n = 10010010

计算n = ((n & 0xCCCCCCCC) >> 2) + (n & 0x33333333);

得到              n = 00110010

计算n = ((n & 0xF0F0F0F0) >> 4) + (n & 0x0F0F0F0F);

得到              n = 00000101 -----------------à无法再分了,那么5就是答案了。

 

  

4、对于正整数的模运算注意,负数不能这么算

 

先说下比较简单的:

乘除法是很消耗时间的,只要对数左移一位就是乘以2,右移一位就是除以2,传说用位运算效率提高了60%。

乘2^k 众所周知: n<<k。所以你以后还会傻傻地去敲2566*4的结果10264吗?直接2566<<4就搞定了,又快又准确。

 

除2^k众所周知: n>>k。

 

那么 mod 2^k 呢?(2的倍数取模

n&((1<<k)-1)

用通俗的言语来描述就是,对2的倍数取模,只要将数与2的倍数-1做按位与运算即可。

好!方便理解就举个例子吧。

思考:如果结果是要求模2^k时,我们真的需要每次都取模吗?

 

在此很容易让人想到快速幂取模法。

快速幂取模算法

经常做题目的时候会遇到要计算 a^b mod c 的情况,这时候,一个不小心就TLE了。那么如何解决这个问题呢?位运算来帮你吧。

 

首先介绍一下秦九韶算法:(数值分析讲得很清楚)

把一个n次多项式f(x) = a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0]改写成如下形式:

  f(x) = a[n]x^n+a[n-1]x^(n-1))+......+a[1]x+a[0]

  = (a[n]x^(n-1)+a[n-1]x^(n-2)+......+a[1])x+a[0]

  = ((a[n]x^(n-2)+a[n-1]x^(n-3)+......+a[2])x+a[1])x+a[0]

  =. .....

  = (......((a[n]x+a[n-1])x+a[n-2])x+......+a[1])x+a[0].

  求多项式的值时,首先计算最内层括号内一次多项式的值,即

  v[1]=a[n]x+a[n-1]

  然后由内向外逐层计算一次多项式的值,即

  v[2]=v[1]x+a[n-2]

  v[3]=v[2]x+a[n-3]

  ......

  v[n]=v[n-1]x+a[0]

这样,求n次多项式f(x)的值就转化为求n个一次多项式的值。

 

好!有了前面的基础知识,我们开始解决问题吧

由(a × b) mod c=( (a mod c) × b) mod c.

我们可以将 b先表示成就:

  b = a[t] × 2^t + a[t-1]× 2^(t-1) + …… + a[0] × 2^0.  (a[i]=[0,1]).

这样我们由 a^b  mod  c = (a^(a[t] × 2^t  +  a[t-1] × 2^(t-1) + …a[0] × 2^0) mod c.

然而我们求  a^( 2^(i+1) ) mod c=( (a^(2^i)) mod c)^2 mod c .求得。

具体实现如下:

使用秦九韶算法思想进行快速幂模算法,简洁漂亮

复制代码
//  快速计算 (a ^ p) % m 的值
__int64 FastM(__int64 a, __int64 p, __int64 m)

     if (p ==  0return  1;
    __int64  r = a % m;
    __int64  k =  1;
     while (p >  1)
    {
         if ((p &  1)!= 0)
        {
            k = (k * r) % m; 
}
              r = (r * r) % m;
            p >>=  1;
        }
         return (r * k) % m;
}
复制代码

 

 http://acm.pku.edu.cn/JudgeOnline/problem?id=3070

 

5、计算掩码

比如一个截取低6位的掩码:0×3F
用位运算这么表示:(1 << 6) - 1
这样也非常好读取掩码,因为掩码的位数直接体现在表达式里。

 

按位或运算很简单,只要a和b中相应位出现1,那么a|b的结果相应位也为1。就不多说了。 

 

6、子集

  枚举出一个集合的子集。设原集合为mask,则下面的代码就可以列出它的所有子集: 



  for (i = mask ; i ; i = (i - 1) & mask) ; 

很漂很漂亮吧。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
实验一 术逻辑单元 1. 实验目的 (1) 掌握运算器的工作原理。 (2) 验证运算器的功能 2. 实验要求 (1)基本要求 设计一个4位的术逻辑单元,满足以下要求。 ①4位术逻辑单元能够进行下列运算:加法、减法、加1、减1、与、或、非和传递。用3位操作码进行运算,控制方式如下表所示。 运算操作码     运    对标识位Z和C的影响 000 result ←A+B 影响标志位Z和C 001 result ←A+1 影响标志位Z和C 010 result ←A-B 影响标志位Z和C 011 result ←A-1 影响标志位Z和C 100 result←A and B 影响标志位Z 101 result←A or B 影响标志位Z 110 result← not B 影响标志位Z 111 result←B 不影响标志位Z和C ②设立两个标志触发器Z和C。当复位信号reset为低电平时,将这两个标志触发器清零。当运算结束后,在时钟clk的上升沿改变标志触发器Z和C的值。运算结果改变标志触发器C、Z的情况如下:加法、减法、加1、减1运算改变Z、C;与、或、非运算改变Z,C保持不变;传送操作保持Z、C不变。因此在运算结束时Z、C需要两个D触发器保持。 ③为了保存操作数A和B,设计两个4位寄存器A和B。当寄存器选择信号sel=0时,如果允许写信号write=1,则在时钟clk的上升沿将数据输入dinput送入A寄存器;当sel=1时,如果允许写信号write=1,则在时钟clk的上升沿将数据输入dinput送入B。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值