【GPLT 二阶题目集】L2-010 排座位

该程序通过并查集处理宾客的关系,判断在宴会上两个人是否可以被安排在同一张桌子。输入包括宾客数量、关系数和查询数,以及宾客间的关系(朋友或敌人)。输出根据他们之间的关系判断是否适合同席,可能的结果包括Noproblem(朋友且无敌对),OK(非朋友也非敌人),OKbut...(有敌对但有共同朋友)和Noway(直接敌对)。
摘要由CSDN通过智能技术生成

布置宴席最微妙的事情,就是给前来参宴的各位宾客安排座位。无论如何,总不能把两个死对头排到同一张宴会桌旁!这个艰巨任务现在就交给你,对任何一对客人,请编写程序告诉主人他们是否能被安排同席

输入格式:

输入第一行给出3个正整数:N(≤100),即前来参宴的宾客总人数,则这些人从1到N编号;M为已知两两宾客之间的关系数;K为查询的条数。随后M行,每行给出一对宾客之间的关系,格式为:宾客1 宾客2 关系,其中关系为1表示是朋友,-1表示是死对头。注意两个人不可能既是朋友又是敌人。最后K行,每行给出一对需要查询的宾客编号。

这里假设朋友的朋友也是朋友。但敌人的敌人并不一定就是朋友,朋友的敌人也不一定是敌人。只有单纯直接的敌对关系才是绝对不能同席的。

输出格式:

对每个查询输出一行结果:如果两位宾客之间是朋友,且没有敌对关系,则输出No problem;如果他们之间并不是朋友,但也不敌对,则输出OK;如果他们之间有敌对,然而也有共同的朋友,则输出OK but...;如果他们之间只有敌对关系,则输出No way。

输入样例:

7 8 4
5 6 1
2 7 -1
1 3 1
3 4 1
6 7 -1
1 2 1
1 4 1
2 3 -1
3 4
5 7
2 3
7 2

输出样例:

No problem
OK
OK but...
No way

#include <iostream>
#define MAXSIZE 110
using namespace std;

int anc[MAXSIZE];

int findd(int n)
{
    if (anc[n] == n)
        return n;
    return anc[n] = findd(anc[n]);
}

void unionn(int a, int b)
{
    int a_anc = findd(a);
    int b_anc = findd(b);
    if (a_anc != b_anc) anc[a_anc] = b_anc; //防止成环,如unionn(a,b);unionn(b,a)
    return;
}

int main()
{
    int relat[MAXSIZE][MAXSIZE] = { 0 };
    int n, m, k; cin >> n >> m >> k;
    for (int i = 1; i <= n; i++)
        anc[i] = i;

    int a, b, c;
    for (int i = 0; i < m; i++) {
        cin >> a >> b >> c;
        relat[a][b] = relat[b][a] = c;
        if (c == 1) unionn(a, b);
    }
    for (int i = 1; i <= n; i++)
        findd(i);
    for (int i = 0; i < k; i++) {
        cin >> a >> b;
        if (findd(a) == findd(b) && relat[a][b] != -1)
            cout << "No problem" << endl;
        else if (findd(a) != findd(b) && relat[a][b] != -1)
            cout << "OK" << endl;
        else if (findd(a) == findd(b) && relat[a][b] == -1)
            cout << "OK but..." << endl;
        else if (findd(a) != findd(b) && relat[a][b] == -1)
            cout << "No way" << endl;
    }
    return 0;
}

 注意事项:

并查集,在一个集合里表示是朋友或者有共同朋友,具体是哪个情况需要根据两人关系是-1还是1。

如有问题,欢迎提出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花辞树dor

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值