数据挖掘系列
数据挖掘
Despacito1006
某985高校计算机专业硕士一枚~
展开
-
时间序列预测中的特征处理
特征处理特征工程通常会提取大量的特征,而好的特征将会对模型的预测功能产生好的影响,是一个事半功倍的过程;差的特征会对模型最终的预测功能产生不利的影响,其实在数据挖掘或数据分析领域,80%的主要工作都集中于对数据的特征处理上,而关于模型的选择和融合仅占20%左右,由此可见特征处理的重要性。劣汰:去除几乎无关的特征,保留大量特征优胜:挑选出良好的特征,组成最优特征子集在对数据分析并进行特征选择的过程中,主要分为如下三个步骤:数据分析与探索、观察数据特点以去除无用特征、基于相关性分析和独立性分析去除弱原创 2020-08-24 14:21:09 · 1845 阅读 · 0 评论 -
时间序列预测模型
时间序列预测模型1.时间序列分解2.ARIMA模型时间序列(或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列。时间序列分析的主要目的是根据已有的历史数据对未来进行预测。一个时间序列往往是以下几类变化形式的叠加或耦合:长期趋势(Secular trend,T):长期趋势指现象在较长时期内持续发展变化的一种趋向或状态;季节变动(Seasonal Variation,S):季节变动是由于季节的变化引起的现象发展水平的规则变动;循环波动(Cyclical Variation原创 2020-08-22 18:02:55 · 4251 阅读 · 0 评论