常见的位运算

运算效果
x << 1、x >> 1乘、除2
x & 1判断x是否为奇数
x & (x - 1)去掉x最低位的1
x & (-x)取出最低位的1
x & (1 << (i - 1))判断二进制下x的第i位是不是1
x | (1 << (i - 1))把二进制下x的第i位变成1

由于今天是第一次运用状态压缩,所以总结一下刚刚做的用了状态压缩的一个题目。先附上这个题目:

AcWing 92. 递归实现指数型枚举

从 1~n 这 n 个整数中随机选取任意多个,输出所有可能的选择方案。

输入格式
输入一个整数n。

输出格式
每行输出一种方案。

同一行内的数必须升序排列,相邻两个数用恰好1个空格隔开。

对于没有选任何数的方案,输出空行。

本题有自定义校验器(SPJ),各行(不同方案)之间的顺序任意。

数据范围
1≤n≤15
输入样例:
3
输出样例:

3
2
2 3
1
1 3
1 2
1 2 3

思路:运用状态压缩:每个数有取和不取两种状态,可以把每个数压缩到一个二进制上,这个数就是二进制对应的位数,而这个数的状态就是对应位的取值,0表示不取,1表示取。

举例:101011,即取1、2、4、6

代码如下:

#include <iostream>
using namespace std;
int n;
void dfs(int step, int state){
    if(step == n){
        for(int i = 0; i < n; i ++ ){
        	//判断state的第i位是不是1,由于i等于0的时候判断的是第1位,所以应该输出i + 1
        	//也可以写成(1 << (i - 1)) & state,即左移1或者右移state
            if(state >> i & 1) cout << i + 1 << " ";
        }
        cout << endl;
        return ;
    }
    
    dfs(step + 1, state); //不选state
    dfs(step + 1, state | 1 << step); //选state:state | (i << step)可以把state第step位变成1,而其他位不变
}
int main(){
    cin >> n;
    dfs(0, 0);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值