运算 | 效果 |
---|---|
x << 1、x >> 1 | 乘、除2 |
x & 1 | 判断x是否为奇数 |
x & (x - 1) | 去掉x最低位的1 |
x & (-x) | 取出最低位的1 |
x & (1 << (i - 1)) | 判断二进制下x的第i位是不是1 |
x | (1 << (i - 1)) | 把二进制下x的第i位变成1 |
由于今天是第一次运用状态压缩,所以总结一下刚刚做的用了状态压缩的一个题目。先附上这个题目:
AcWing 92. 递归实现指数型枚举
从 1~n 这 n 个整数中随机选取任意多个,输出所有可能的选择方案。
输入格式
输入一个整数n。
输出格式
每行输出一种方案。
同一行内的数必须升序排列,相邻两个数用恰好1个空格隔开。
对于没有选任何数的方案,输出空行。
本题有自定义校验器(SPJ),各行(不同方案)之间的顺序任意。
数据范围
1≤n≤15
输入样例:
3
输出样例:
3
2
2 3
1
1 3
1 2
1 2 3
思路:运用状态压缩:每个数有取和不取两种状态,可以把每个数压缩到一个二进制上,这个数就是二进制对应的位数,而这个数的状态就是对应位的取值,0表示不取,1表示取。
举例:101011,即取1、2、4、6
代码如下:
#include <iostream>
using namespace std;
int n;
void dfs(int step, int state){
if(step == n){
for(int i = 0; i < n; i ++ ){
//判断state的第i位是不是1,由于i等于0的时候判断的是第1位,所以应该输出i + 1
//也可以写成(1 << (i - 1)) & state,即左移1或者右移state
if(state >> i & 1) cout << i + 1 << " ";
}
cout << endl;
return ;
}
dfs(step + 1, state); //不选state
dfs(step + 1, state | 1 << step); //选state:state | (i << step)可以把state第step位变成1,而其他位不变
}
int main(){
cin >> n;
dfs(0, 0);
return 0;
}