技术博客
文章平均质量分 73
Dev7z
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
智慧编队,精准跟随:基于领航者跟随法的轮式移动机器人编队控制系统
在智能机器人领域,“多机器人协同作业”始终是一个无法回避的核心议题。单个机器人即便具备高度智能,其能力和效率仍然有限;唯有多机器人之间实现有序协同、相互配合,才能真正胜任复杂环境下的实际任务。设想这样一幅画面:一队轮式移动机器人在领航者的引导下有序前进,如同训练有素的舞者般步调一致;当道路变窄时,编队迅速收缩以适应环境变化;面对外界干扰或突发障碍,整体运动依然稳定流畅,几乎没有多余的震荡与偏移。这种看似“优雅”的运动背后,正对应着智能制造、仓储物流、巡检监测以及灾害救援等应用场景中对高可靠性、高协同性机器人原创 2026-01-31 20:04:10 · 320 阅读 · 0 评论 -
从 YOLOv5n 到 OpenVINO INT8 ≤2MB一个课堂手机检测系统的工程化落地实践
随着智能终端在校园环境中的普及,课堂中学生违规使用手机的行为对教学秩序产生了较大影响。针对传统人工巡查效率低、主观性强的问题,本文设计并实现了一种面向课堂场景的轻量化手机检测与预警系统,在保证检测精度的同时,满足嵌入式与 CPU 端部署对模型体积与推理速度的严格约束。原创 2026-01-28 21:35:06 · 461 阅读 · 0 评论 -
当噪声成为护盾:安全通信中二项分布随机噪声的概率分析与统计特性
在大多数通信系统中,噪声通常被认为是影响系统性能的主要因素之一。工程师们不断优化算法、提升硬件性能,目的几乎都是为了减少噪声对信号的影响,提高传输的可靠性与准确性。原创 2026-01-28 20:12:28 · 570 阅读 · 0 评论 -
OpenVINO INT8 量化:不是玄学,是性价比
在 Intel CPU 推理场景下,只要校准数据足够“像真实输入”,INT8 往往能在几乎不牺牲精度的前提下,显著降低延迟、提升吞吐。本文结合实战经验,聊清楚 INT8 什么时候值得做、为什么容易翻车,以及一套可落地的量化思路。原创 2026-01-28 13:00:52 · 60 阅读 · 0 评论 -
基于 YOLO12 的考试作弊异常行为检测与分析系统 — 项目总结与开发心得
随着教育信息化的发展,传统人工监考方式在大规模考试中暴露出效率低、人力成本高、主观性强等问题。为提升考试管理智能化和规范化水平,本项目设计并实现了一套基于 YOLOv12 深度学习算法的考试异常行为检测与分析系统,能够对考场中多类异常行为进行实时识别、标注、统计和留存。原创 2026-01-27 22:01:27 · 427 阅读 · 0 评论 -
你在笑,算法在看:收费亭里的新考核
AI 走进收费亭,把“微笑服务”从口号变成了可量化的数据。摄像头捕捉表情,算法计算嘴角弧度、持续时间和情绪稳定度。从这一刻起,服务好坏不再完全由人判断,而员工的微笑也可能成为绩效指标。收费亭只是开始,当情绪被算法打分,服务行业的温度,正在悄悄改变。原创 2026-01-27 21:16:31 · 30 阅读 · 0 评论 -
AI 走进收费亭:微笑服务如何被算法
你有没有注意过一个细节——在高速公路收费亭里,收费员是否面带微笑,往往决定了司机对整个收费站的第一印象。然而,“微笑服务”这样看似温度十足、却极其主观的行为,真的能够被量化、被考核吗?在很长一段时间里,管理只能依赖抽查、录像回看和人工评分,不仅成本高、效率低,还容易引发争议。而今天,随着人工智能走进收费亭,这个问题,正在迎来全新的答案。原创 2026-01-27 18:03:52 · 323 阅读 · 0 评论 -
基于图像识别的自动阅卷系统:从答题卡到成绩的技术实现
在大规模考试场景中,人工阅卷普遍存在效率低、主观性强、重复劳动重等问题。随着计算机视觉与深度学习技术的发展,基于图像识别的自动阅卷系统逐渐具备工程落地条件。原创 2026-01-26 21:10:24 · 476 阅读 · 0 评论 -
当老师不用再熬夜改卷:一个“会看试卷”的人工智能系统是如何炼成的?
每到考试周,很多老师都有同一个感受:试卷像雪片一样飞来,眼睛快不行了,手也快不行了,但成绩还得“快、准、公平”地出来。原创 2026-01-26 21:08:15 · 266 阅读 · 0 评论 -
为何反作弊系统总是滞后?国内考试作弊检测的痛点与挑战
随着科技的飞速发展,考试作弊手段也在不断进化,而国内的考试作弊检测系统似乎总是难以跟上这一变化。无论是高考、期末考试,还是其他各类资格考试,作弊现象依然屡禁不止。那么,现有的作弊检测系统为何总是力不从心?它们的根本问题是什么?本文将带您走进国内考试作弊检测系统的现状,分析现有缺陷,并展望未来可能的技术突破。原创 2026-01-25 20:41:00 · 394 阅读 · 0 评论 -
从考试作弊看教育系统的盲点:为什么反作弊总是力不从心?
考试作弊一直以来都是国内教育系统中一个难以忽视的问题。无论是高考、期末考试,还是一些重要的资格考试,作弊现象屡禁不止。为什么明知作弊严重违法,依然层出不穷?这些现象背后,是教育体系中一些深层次的缺陷,它们究竟如何影响着我们的教育质量和公平性?原创 2026-01-25 20:38:15 · 259 阅读 · 0 评论 -
未来考试,作弊无所遁形:如何利用人工智能与大数据实现高效检测
考试作弊,作为一直困扰教育领域的问题,不仅影响了考试的公平性,也让诚信受到了严重威胁。想象一下,如果有一套智能系统,能够在实时监控中自动发现作弊行为,并及时发出警报,彻底改变传统的考试监控模式,那将会是怎样的场景?原创 2026-01-25 20:35:59 · 300 阅读 · 0 评论 -
破解考试作弊的“黑科技”!基于YOLO12的考场作弊异常行为检测系统设计与实现
是否曾经在考试中遇到过作弊现象?无论是偷偷交换答案,还是借助高科技作弊工具,传统的监考方式总是力不从心。今天,我们将为你揭示一项改变游戏规则的技术——基于YOLO12的考试作弊异常行为检测系统。这项技术不仅可以实时检测作弊行为,还能提供更加精准和高效的监控解决方案。让我们一起来看看,这项“黑科技”是如何实现的!原创 2026-01-25 20:33:19 · 400 阅读 · 0 评论 -
基于深度学习的车辆分类方法研究与实现-填补国内新能源车型和品牌识别空白
随着 ITS、智慧城市和自动驾驶的发展,“车是什么车”这件事越来越重要。车辆自动识别与分类不仅要能分清品牌,还要能判断车型(轿车/SUV/MPV 等)。这些能力在交通流量分析、电子警察违法取证、停车场管理、车辆检索等场景里都能直接落地。原创 2026-01-16 22:40:42 · 83 阅读 · 0 评论 -
基于深度学习的泳池溺水行为检测算法设计
随着公共泳池和水上娱乐场所的普及,溺水事故已成为威胁人身安全的重要隐患之一。传统的人工监控方式依赖救生员的主观判断,存在疲劳、漏判和反应延迟等问题。近年来,深度学习与计算机视觉技术的快速发展,为泳池溺水行为的自动检测与预警提供了新的解决思路。原创 2026-01-15 22:38:34 · 977 阅读 · 0 评论 -
基于 YOLO 的课堂手机使用行为智能检测系统实践
随着课堂管理信息化的发展,如何在不干扰教学的前提下,对学生课堂手机使用行为进行客观、实时的监测,成为一个具有现实意义的问题。本文介绍了一种基于 YOLO 轻量化目标检测模型 的课堂手机使用行为智能识别系统的设计与实现过程。原创 2026-01-15 22:25:04 · 396 阅读 · 0 评论 -
基于多尺度深度卷积增强的YOLO11公共区域发传单违规行为检测系统——我之见
在城市公共区域治理中,违规发放商业传单一直是一个看似细小却长期存在的管理难题。地铁口、商业街、校园周边等区域,由于人流密集,常成为违规发传单的高发地带。这类行为不仅影响市容环境,还可能引发安全隐患与秩序混乱。传统治理方式高度依赖人工巡查,存在成本高、效率低、覆盖不连续等问题。原创 2026-01-15 22:00:25 · 369 阅读 · 0 评论 -
基于 YOLOv8 的智慧考场考试防作弊行为检测系统设计与实现
随着在线考试和信息化教学的快速发展,传统人工监考方式在大规模考试场景中逐渐暴露出效率低、主观性强和监管成本高等问题。基于计算机视觉与深度学习的智慧考场技术,能够对考生行为进行自动分析与实时监测,成为当前教育信息化建设的重要研究方向。本文基于 YOLOv8 目标检测算法,设计并实现了一套智慧考场考试防作弊行为检测系统,对考试过程中可能出现的作弊行为进行自动识别与预警,从而提升考试的公平性与智能化水平。原创 2026-01-05 10:14:16 · 294 阅读 · 0 评论 -
YOLO11 车型与车辆品牌检测系统— 让“看懂每一辆车”成为现实
在智慧交通与城市智能化快速发展的背景下,仅仅“检测到车辆”已经无法满足实际需求。人们更希望系统能够进一步识别车辆的车型与品牌,从而为交通管理、安防监控和商业分析提供更深层的数据支撑。基于此,YOLO11 车型与车辆品牌检测系统应运而生,让计算机视觉真正“看懂”每一辆车。原创 2026-01-05 09:57:55 · 209 阅读 · 0 评论 -
突破传统监控:基于YOLO的人员异常行为检测与识别智能安防监控系统设计
着智能城市的快速发展,传统的安防监控系统逐渐暴露出其局限性,尤其是在应对实时异常行为检测和快速反应方面。传统监控依赖人工分析,不仅效率低,而且容易错过重要的安全隐患。因此,基于深度学习的智能监控系统成为安防领域的未来趋势。特别是基于YOLO(You Only Look Once)目标检测算法的人员异常行为智能识别与实时防范系统,凭借其高效、精准的特点,正在成为现代智能安防解决方案的核心。原创 2025-12-31 17:38:52 · 287 阅读 · 0 评论 -
别再“套公式”式改 YOLO 了:真正有效的算法改进,永远从问题本身出发
近年来,YOLO 系列目标检测算法凭借端到端、高速度、易部署的特性,几乎成为工业界与学术界的“标配”。与此同时,“YOLO 算法改进”也成了论文、博客和工程项目中的高频关键词。然而一个不容忽视的现实是:大量所谓的“改进”,只是对已有方法的简单拼接和复刻,脱离实际问题,最终效果并不理想。原创 2025-12-27 08:13:53 · 397 阅读 · 0 评论 -
基于 YOLOv5n 的课堂手机检测系统:让“低头族”无处遁形
在课堂上,老师最头疼的场景之一,莫过于学生“低头玩手机”。人工巡视不仅效率低,而且难以兼顾全班,更无法形成可量化的管理依据。随着计算机视觉技术的成熟,能否让系统“自动看懂课堂”,成为智慧教学中的一个现实问题。基于这一需求,我尝试将轻量化目标检测模型引入课堂场景,设计并实现了一套基于 YOLOv5n 的课堂手机检测系统,让手机使用行为能够被实时识别、统计和预警。原创 2025-12-26 17:58:09 · 215 阅读 · 0 评论 -
人工智能很聪明,但它不替你负责—AI 时代的清醒指南
人工智能最深刻的改变,并不体现在某一次技术突破上,而体现在它悄然改变了人们使用“思考”的方式。原创 2025-12-23 10:09:25 · 201 阅读 · 0 评论 -
算力之重:AI飞速狂奔背后,被忽视的真实代价
从一次简单的文本生成,到一个大模型的训练完成,背后是成千上万张 GPU 日夜运转,是电力、散热、芯片、资本与时间的密集叠加。AI 看似“轻盈”,实则极其“笨重”。原创 2025-12-23 09:57:08 · 209 阅读 · 0 评论 -
YOLO11 公共区域违法发传单检测系统设计与实现
针对公共区域中违法发放传单行为频发、人工监管效率低的问题,提出了一种基于 YOLO11 目标检测算法的公共区域违法发传单智能检测系统。该系统以监控视频为数据来源,通过构建包含行人和传单目标的数据集,对 YOLO11 模型进行训练与优化,实现对人员及传单的高精度实时检测。在此基础上,结合目标空间关系与时间连续性特征,设计了一套违法发传单行为判定规则,从而有效区分正常携带物品与实际发传单行为。实验结果表明,该系统在复杂公共场景下具备较高的检测准确率与实时性,能够稳定识别疑似违法发传单行为,具有良好的实用价值和推原创 2025-12-22 19:01:27 · 783 阅读 · 0 评论 -
基于 YOLOv11 的老人跌倒检测系统实战:从模型训练到完整报警平台落地
随着人口老龄化进程的不断加快,老年人因摔倒、滑倒等意外行为导致的伤害风险显著上升,如何实现对老年人异常行为的及时、准确监测已成为智能养老领域亟需解决的问题。针对传统人工监护方式实时性差、误报率高以及适用场景受限等不足,本文设计并实现了一种基于深度学习的老年人摔倒与滑倒行为自动检测及智能报警系统。原创 2025-12-20 13:07:45 · 433 阅读 · 0 评论 -
基于机器视觉技术的课堂学情实时分析
传统课堂学情分析长期依赖教师的课堂观察与人工记录,这种方式不仅耗费精力,而且不可避免地带有较强的主观性与滞后性。教师往往难以及时、精准地捕捉学生在课堂中的真实学习状态,教学督导也难以全面、客观地评估课堂教学质量,而在学院管理层面,更缺乏稳定、可量化的数据支撑教学决策,导致教学改进更多停留在经验层面,效果有限。原创 2025-12-15 20:22:57 · 244 阅读 · 0 评论 -
基于神经网络的风电机组齿轮箱故障诊断研究与设计
随着全球能源结构向清洁化、低碳化转型,风力发电已成为新能源领域的重要组成部分。风电机组通常运行在高负载、强振动和复杂气候环境中,其中齿轮箱作为风电机组的关键传动部件,承担着转速和扭矩转换的重要任务,其运行状态直接影响整机的安全性和可靠性。原创 2025-12-13 15:37:31 · 318 阅读 · 0 评论 -
当 AI 成为“守护者”:基于 YOLOv11 的独居老人摔倒识别系统设计与实现
随着老龄化社会的加速,独居老人的安全问题日益凸显。据统计,跌倒已成为 65 岁以上老年人意外伤害的首要原因,而多数危险发生时,身边无人、发现不及时。原创 2025-12-12 16:53:15 · 230 阅读 · 0 评论 -
在 Windows 和Linux上启动 Redis(本机开发用)
在 Windows 上启动 Redis(本机开发用)原创 2025-12-09 18:46:25 · 545 阅读 · 0 评论 -
在MySQL里创建数据库
在MySQL里创建数据库原创 2025-12-09 11:51:05 · 192 阅读 · 0 评论 -
轮胎对纯电动汽车动力性影响研究
你可能不知道,纯电动车的性能好坏,有时候并不取决于电机有多强、三电系统有多先进,而是——你脚下那四个看似普通的“黑圆圈”。我在 MATLAB 中做了一个简单的动力学仿真,只是把轮胎的滚阻、附着和半径调了几个数字,整车的加速、续航乃至最高车速就像换了台车一样发生巨大变化:起步更猛、能耗更低,甚至连换个大轮毂都会让加速变“肉”。这让我意识到,轮胎不是配件,而是纯电动车隐藏最深、却最左右性能的关键变量。本篇文章,就带你揭开这层被忽视的真相。原创 2025-11-30 22:38:42 · 384 阅读 · 0 评论 -
入选《人工智能领域内容版》第1名
2025年11月30日入选《人工智能领域内容版》第1名原创 2025-11-30 08:00:25 · 165 阅读 · 0 评论 -
基于Matlab融合传统方法、空间域、频率域与Retinex的多域图像增强系统
随着图像处理技术的不断发展,图像增强在多个领域中得到了广泛应用,尤其是在低光、去雾、夜间监控等复杂环境下。本文提出了一种基于MATLAB的多域图像增强系统,该系统集成了传统图像增强方法、空间域增强、频率域增强和基于Retinex的图像增强算法。该系统通过用户友好的图形界面(GUI)实现了多种图像增强功能,旨在提高图像的可视性、细节和对比度。原创 2025-11-27 12:37:01 · 498 阅读 · 0 评论 -
面向公共场所的吸烟行为视觉检测系统研究
吸烟是全球导致多种慢性疾病和死亡的主要风险因素,其烟雾不仅危害吸烟者自身健康,还对周围人群造成被动吸烟危害。随着公共健康意识的提高,各国已出台严格的禁烟条例,特别是在公共室内场所。然而,室内环境复杂、人员流动性大、吸烟行为隐蔽,传统的禁烟监管方法难以有效发现吸烟行为。原创 2025-11-24 20:23:27 · 856 阅读 · 0 评论 -
基于RCNN神经网络以及Canny边缘检测算法的番茄叶片病虫害识别方法
在智能农业的浪潮下,如何利用现代计算机视觉与人工智能技术进行精准、高效的作物病虫害监测,已经成为提升农业生产力的关键。番茄作为全球重要的经济作物,其病虫害防治一直是农民面临的巨大挑战。传统的人工检测方式不仅费时费力,而且容易出现判断失误。而随着深度学习与图像处理技术的快速发展,基于RCNN神经网络和Canny边缘检测算法的番茄叶片病虫害识别方法,正以其卓越的识别能力和智能化特点,重新定义农业病虫害的精准防治。原创 2025-11-24 19:06:57 · 1267 阅读 · 0 评论 -
基于图像识别的老年人跌倒检测系统设计与实现
随着人口老龄化不断加深,独居老人的安全问题愈发受到社会关注。跌倒是老年人最常见且最危险的意外之一,一旦发生处理不及时,很容易导致骨折、休克甚至危及生命。因此,基于人工智能与计算机视觉的老年人跌倒检测系统逐渐成为智慧养老领域的核心技术。原创 2025-11-24 07:23:32 · 813 阅读 · 0 评论 -
智能情感识别:基于USB摄像头和深度学习的实时面部表情分析系统
随着人工智能技术的快速发展,情感识别成为了计算机视觉和人机交互领域的重要研究方向。情感识别系统不仅能够通过分析人类面部表情来识别个体的情绪状态,还可以广泛应用于心理健康、智能客服、教育培训等多个领域。本项目旨在设计一款基于USB摄像头的实时情感识别系统,通过摄像头采集面部图像,分析并识别出用户的情感状态。系统将通过识别六种基本情感:高兴、悲伤、愤怒、平静、恐惧、厌恶,为进一步的情感分析与互动提供精准的数据支持。原创 2025-11-23 08:53:18 · 777 阅读 · 0 评论 -
智能交通安全卫士:基于YOLO与OpenCV的头盔佩戴实时检测系统设计
本项目旨在设计并实现一个基于YOLO目标检测算法和OpenCV图像处理库的头盔佩戴检测系统。通过Python编程语言和PC硬件设备,开发一个稳定运行的程序。该程序配有交互界面,能够实时检测并分析头盔佩戴情况,及时识别未佩戴头盔的行为,并进行警告提示。系统支持图像和视频数据处理,并能输出检测结果,包括头盔佩戴状态的识别(佩戴/未佩戴)及其检测位置(头部区域)。原创 2025-11-23 08:39:56 · 672 阅读 · 0 评论 -
让阅卷不再繁琐:图像识别与数据分析提升智能答题卡评分效率
随着人工智能、计算机视觉和大数据技术的飞速发展,传统的人工阅卷方式已经无法满足现代教育对考试评分效率和准确度的高要求。智能答题卡阅卷系统应运而生,成为一种高效且精准的解决方案。通过图像处理与数据分析技术,智能阅卷系统不仅能够自动化识别答题卡中的选项标记,还能通过深度学习等先进算法进行高效评分,大大提高了阅卷速度和准确性。原创 2025-11-22 22:02:30 · 612 阅读 · 0 评论
分享