深度学习
文章平均质量分 86
Dev7z
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于深度学习的中文手写数字识别系统研究与实现
针对传统中文手写数字识别在多类别汉字数字(“零、一、二、三、四、五、六、七、八、九、十、百、千、万、亿”)上的识别精度与实用性不足问题,本文构建了一套面向 15 类中文数字的深度学习识别系统。首先,整理并标准化多来源手写样本,将数据统一为 64×64 的 RGB 图像格式,并按照训练集、验证集和测试集进行规范化划分,为后续模型训练与评估奠定了高质量数据基础。原创 2025-12-02 20:45:45 · 1413 阅读 · 0 评论 -
基于Matlab卷积神经网络的交通警察手势识别方法研究与实现
随着智能交通系统的快速发展,交通警察手势识别作为交通管理和自动化控制中的重要环节,得到了越来越多的关注。传统的手势识别方法常面临识别精度和实时性等方面的挑战。近年来,深度学习技术,尤其是卷积神经网络(CNN),因其在图像特征提取和模式识别中的优势,成为提升交通警察手势识别效果的理想工具。本研究基于卷积神经网络,提出了一种针对交通警察手势的自动化识别方法,旨在提高手势识别的准确性和实时性。原创 2025-12-02 07:48:45 · 872 阅读 · 0 评论 -
基于Matlab的PCA与BP神经网络多车型图像识别系统
随着智能交通系统和城市车辆管理需求的不断增长,车辆图像识别技术在交通监控、交通流量统计以及公共安全等应用领域中愈加重要。针对传统人工特征提取方式识别效率低、泛化能力弱的问题,本文基于 MATLAB 平台构建了一种结合主成分分析(PCA)与 BP 神经网络的多车型图像识别系统。原创 2025-12-01 09:17:33 · 816 阅读 · 0 评论 -
基于深度学习的手写数学公式识别与计算系统设计与实现
随着深度学习和计算机视觉技术的快速发展,手写数学公式的自动识别与计算在智能教育、人机交互等场景中具有重要应用价值。本文围绕“基于深度学习的手写数学公式识别与计算系统设计与实现”这一课题,设计并实现了一套集公式图像输入、字符分割、字符识别及表达式计算于一体的完整系统。原创 2025-11-30 23:47:27 · 853 阅读 · 0 评论 -
基于深度学习和图像处理的药丸计数与分类系统研究
本课题设计并实现了一套基于图像处理与深度学习的药丸计数与分类系统。系统首先对输入的药丸图像进行预处理,包括灰度化、中值滤波、Sobel 边缘检测、膨胀运算、区域填充及面积开运算等,以获得完整的药丸二值图。随后利用连通域分析提取每个药丸的外接矩形框,并自动将其分割保存到独立文件夹中,从而实现药丸的自动检测与计数。原创 2025-11-29 21:20:09 · 1035 阅读 · 0 评论 -
基于深度学习的糖尿病预测与医疗数据可视化平台研究
随着现代社会健康问题的日益严重,糖尿病已经成为全球范围内的主要公共卫生问题。糖尿病的早期诊断和有效干预对于控制疾病进展、提高患者生活质量至关重要。近年来,深度学习技术在医学领域的应用逐渐增多,尤其是在疾病预测和诊断方面取得了显著成果。本研究基于深度学习方法,开发了一种糖尿病医疗数据可视化与预测平台,旨在帮助医疗专业人员和患者实现糖尿病的早期筛查与管理。原创 2025-11-29 10:35:32 · 949 阅读 · 0 评论 -
基于PyTorch的MNIST手写数字识别模型训练与Web部署
本文针对手写数字识别,基于 PyTorch 构建 MNIST CNN 卷积神经网络并实现端到端识别与在线推理系统。模型通过多层卷积与池化提取特征,在全连接层完成十类数字分类;训练采用 MNIST 数据集,结合随机旋转与仿射增强提升鲁棒性,并使用交叉熵损失、Adam 优化器、ReduceLROnPlateau 调度及 Early Stopping 选择最优参数。原创 2025-11-28 08:00:22 · 290 阅读 · 0 评论 -
基于深度学习与 Web 技术的手写数字识别系统开发与应用研究
本课题以深度学习技术为基础,设计并实现了一套基于卷积神经网络(Convolutional Neural Network,CNN)的手写数字识别系统。系统采用经典的 MNIST 手写数字数据集作为训练数据,通过搭建多层卷积神经网络,实现对 0–9 十个数字类别的自动识别。模型结构包括多个卷积层、最大池化层、Dropout 随机失活层以及全连接层,并采用 Adam 优化器与交叉熵损失函数进行训练。通过 EarlyStopping 和 ReduceLROnPlateau 等回调机制有效防止过拟合、提升模型稳定性。原创 2025-11-27 19:55:49 · 741 阅读 · 0 评论
分享