【案例共创】从0开始使用华为云开发者空间搭建房价预测模型

最新案例动态,请查阅【案例共创】从0开始使用华为云开发者空间搭建房价预测模型。小伙伴们快来领取华为开发者空间进行实操吧!

本案例由:梅科尔工作室提供

1 概述

1.1 案例介绍

华为云开发者空间,华为云为每个新生态开发者免费提供一台云主机,每位开发者每年可享有数百小时的使用时长。云主机预集成CodeArts IDE、代码仓及JDK、Python等运行时插件,解决本地开发环境中配置复杂、稳定性不足和依赖等问题,为开发者提供性能强大、安全、稳定、高效的开发环境。

官方文档:图解开发者空间-平台概述-开发者空间 Developer Space

本案例为从0开始使用华为云开发者空间搭建房价预测模型,并借助开发者空间云主机提供的免费CodeArts IDE for Python编辑器进行代码编写。

通过实际操作,让大家深入了解,如何使用华为云开发者空间从0开始搭建一个房价预测模型,也可以使开发者更深入的了解开发者空间和CodeArts IDE的功能。

1.2 适用对象

  • 个人开发者

  • 高校学生

1.3 案例时间

本案例总时长预计30分钟。

1.4 案例流程

说明:

  1. 配置开发者空间环境;

  2. 打开IDE搭建房价预测模型。

1.5 资源总览

本案例预计花费总计0元。

| 开发者空间 | 2vCPUs | 4GB X86 |Ubuntu 22.04 Server定制版 |

2 开发者空间配置和Python工程创建

2.1 登录华为云开发者空间

浏览器输入以下地址:

https://developer.huaweicloud.com/space/devportal/desktop

2.2 环境配置

如果开发者使用Python集成环境,需要在‘’使⽤说明‘’⸺>‘’配置信息‘’当中,选择CPU架构为X86,操作系统为‘’Ubuntu‘’,公共镜像选择为‘’Ubuntu 22.04 server定制版‘’。

注意:如果云主机正在运行,需要先重置,等云主机关机后再进行环境配置。

点击‘’进入桌面‘’,进入到云主机桌面中

2.3 打开Python集成开发环境

打开IDE后,选择新建工程,然后按照下图进行环境配置,注:名称可以自定义,配置完成后点击创建

这样,一个全新的Python工程就创建好啦!

3 房价预测模型创建

3.1 项目介绍

本项目旨在通过线性回归模型预测房屋总价。具体来说,我们将使用房屋面积作为自变量,总价作为因变量,通过线性回归模型来预测房屋总价,并评估模型的性能。

3.2 代码分析

导入必要的库

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
  • numpy:用于数值计算;
  • matplotlib.pyplot:用于数据可视化;
  • sklearn.linear_model.LinearRegression:用于创建线性回归模型;
  • sklearn.model_selection.train_test_split:用于划分训练集和测试集;
  • sklearn.metrics.mean_squared_error和sklearn.metrics.r2_score:用于评估模型性能。

注意:首次运行会出现报错,因为编译器里没有项目所需的一些依赖,要进行配置

打开终端,输入对应依赖包:

以本项目为例:

pip install numpy
pip install matplotlib
pip install scikit-learn
# 安装后可查看安装结果
#在终端继续输⼊
pip list | grep numpy
#终端打印出:
numpy 2.2.2
#即为安装成功
pip list | grep matplotlib
#终端打印出:
matplotlib 3.10.0
#即为安装成功
pip list | grep scikit-learn
#终端打印出:
scikit-learn 1.6.1
#即为安装成功
  1. 生成模拟数据
np.random.seed(0) # 设置随机种⼦以保证结果可复现
# ⽣成房屋⾯积(平⽅⽶)
areas = np.random.uniform(50, 200, 100) # ⽣成100个⾯积,范围在50到200平⽅⽶之间
# ⽣成单位⾯积的价格(元/平⽅⽶)
unit_prices = np.random.uniform(10000, 30000, 100) # ⽣成100个单位⾯积价格,范围在10000到30000元/平⽅⽶之间
# 计算总价
total_prices = areas * unit_prices
# 将数据转换为⼆维数组(scikit-learn需要⼆维输⼊)
X = areas.reshape(-1, 1) # ⾃变量:⾯积
y = total_prices # 因变量:总价
  • 使用Np.random.uniform生成房屋面积和单位面积价格的随机数据;

  • 计算房屋总价;

  • 将自变量areas转换为二维数组,以满足scikit-learn的输入要求。

  1. 划分训练集和测试
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2,random_state=42)
  • 使用train_test_split将数据划分为训练集和测试集,测试集占总数据的20%
  1. 创建并训练线性回归模型
model = LinearRegression()
model.fit(X_train, y_train)
  • 创建LinearRegression模型;

  • 使用训练集数据训练模型

  1. 预测测试集
y_pred = model.predict(X_test)
  1. 评估模型
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"均⽅误差 (MSE): {mse:.2f}")
print(f"决定系数 (R^2): {r2:.2f}")
  • 使用均方误差(MSE)和决定系数(R^2)评估模型性能。

  • 打印评估结果

  1. 可视化结果
#可视化结果
plt.figure(figsize=(10,6))
plt.scatter(X_test,y_test, color='blue', label='real', alpha=0.6)
plt.plot(X_test,y_pred, color='red', linewidth=2, label='reveiew')
plt.xlabel('m\*m', fontsize=12)
plt.ylabel('RMB', fontsize=12)
plt.title('relationship', fontsize=14)
plt.legend(fontsize=10)
plt.grid(True)
#保存图像
plt.savefig('example_plot.png')
print("图像已保存为 example_plot.png")
# 显⽰图像
plt.show()
  • 使用matplotlib.pyplot绘制散点图和预测线;

  • 保存图像并显示。

项目结果

  • 均方误差(MSE):衡量预测值与真实值之间的平均误差平方;

  • 决定系数(R^2):衡量模型对数据拟合程度,值越接近1表示拟合效果越好;

  • 可视化图像:展示了测试集的真实值和预测值之间的关系。

项目意义

本项目通过线性回归模型预测房屋总价,展示了如何使用scikit-learn进行数据预处理、模型训练、预测和评估,以及如何使用matplotlib进行数据可视化。这为初学者提供了一个完成的机器学习项目示例。

运行结果

至此,从0开始使用华为云开发者空间搭建房价预测实验完成。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值