AI 浪潮下,医药领域的破局与新生(附教程)

在人工智能日益发展的今天,身处时代浪潮,任何行业都已无法视而不见。医药领域作为关乎人类健康的关键行业,也正积极拥抱人工智能,尤其是大模型技术的融入,正深刻地改变着医药行业的格局,从医院的诊疗流程到医药企业的研发生产,一场智能化变革正在悄然发生。

01 国内外医疗机构接入大模型的实践与成果

  • 上海交通大学医学院附属瑞金医院

2月18日,瑞金医院与华为技术有限公司合作开发的病理大模型“瑞智病理大模型”正式发布。该模型基于瑞金医院丰富的病种和高质量的医疗数据,癌种覆盖广度达到中国每年全癌种发病人数90%的常见癌种,还涵盖垂体神经内分泌肿瘤等罕见病。医生可以和“瑞智病理大模型”开展互动式病理诊断对话,实现多模态融合,为病理诊断提供了更精准、高效的辅助工具。

此外,通过引入大模型,可快速对海量病理图像数据进行分析,帮助医生更准确、高效地判断病情,还能推动优质医疗资源下沉,实现三甲医院与基层医疗机构的远程诊断协同 。

  • 首都医科大学附属北京儿童医院

2月13日,在首都医科大学附属北京儿童医院“国家儿童医学中心主任、北京儿童医院院长、耳鼻咽喉头颈外科专家倪鑫教授的主持下,来自耳鼻咽喉头颈外科、肿瘤外科、肿瘤内科、神经外科等科室的13名知名专家,对一名8岁患儿的病情进行讨论。与此同时,人工智能(AI)儿科医生正式“上岗”,标志着北京儿童医院开启“AI儿科医生+多学科专家”双医并行多学科会诊模式。

北京儿童医院还将陆续推出家庭型AI儿科医生和社区型AI儿科医生,覆盖基层医疗机构和家庭健康管理等多元化场景,满足家庭保健需求,提升基层儿科服务能力,为全国3亿儿童健康成长保驾护航。

  • 昆山市第一人民医院

2月10日,昆山市第一人民医院宣布DeepSeek已正式落地昆山市第一人民医院-昆山生物医学大数据创新应用实验室,并完成本地化部署。

该实验室由昆山市委市政府、大数据局和卫健委指导,昆山市第一人民医院承建。实验室以应对人口老龄化带来的健康挑战为核心目标,建设覆盖 20万昆山老年人群的生物医学数据资源库,通过大数据分析与AI技术研发智慧化医疗设备和数智应用技术,全面提升医疗服务的质量与效率。

  • 深圳大学附属华南医院

深圳大学附属华南医院也宣布本地化部署国产人工智能大模型DeepSeek-R1,其在构建“一个问诊大模型+N个分诊智能体小模型”的技术架构的基础上,结合DeepSeek在AI大模型、深度学习算法及多模态技术领域的领先优势,并已着手探索AI智能体在医学知识库和智能问答、临床辅助诊断、健康宣教、流程优化、数据驱动决策等场景的创新应用。

  • 梅奥诊所

作为世界著名的医疗机构,梅奥诊所与谷歌合作,利用谷歌的AI技术和大模型,对大量的医疗影像数据进行分析,能够更精准地识别疾病特征,辅助医生进行早期诊断和干预,为患者提供更优质的医疗服务。

  • 克利夫兰诊所

其与微软合作,将微软的AI大模型应用于临床决策支持系统中。该系统能够根据患者的病史、症状等信息,快速生成个性化的治疗方案建议,为医生提供参考,帮助医生更好地制定治疗计划,提高治疗效果和患者满意度。

02 医药企业接入大模型的探索与成效

据中新经纬不完全统计,截至目前,已有超过27家在AH 股上市的医药企业宣布接入 DeepSeek。这些企业涵盖了医疗信息化与互联网医疗、基因检测与体外诊断、医疗服务与健康管理、医药研发与生产等多个领域。

  • 医疗信息化与互联网医疗类

卫宁健康

作为行业代表,接入大模型旨在提升医疗信息化系统的智能化水平。通过大模型对医疗数据的深度挖掘和分析,优化医疗流程,提高医院管理效率,为患者提供更便捷的就医体验。

方舟健客

作为线上慢病疾病管理平台,接入 DeepSeek 后,从技术角度加速自身 AI 应用的研发进程,提升解决方案的智能化程度;从性能方面,DeepSeek 在医疗领域基础知识输出更全面准确,逻辑推理严谨,能处理复杂任务,提供精准决策支持;从成本角度,其采用 MoE 架构,资源开销少,更具经济性,且可私有化部署,保障数据隐私安全 。

  • 基因检测与体外诊断类

贝瑞基因

聚焦生育健康、遗传病检测、肿瘤检测等领域。为提升运营效率、降低成本并提供优质服务,引入包括 DeepSeek 在内的多种开源模型。利用其数据处理与分析能力,在各检测领域提升检测效率,借助智能化算法快速精准解读遗传学信息,加快报告生成,提高整体产出能力。同时,智能算法有助于统一疾病解读标准,减少误差,提升检测服务质量。在变异解读大模型和遗传咨询大模型开发中,DeepSeek 成为补充和增强,丰富了 AI 模型库,提供更多算法选择和优化空间。

  • 医疗服务与健康管理类

固生堂

将中医诊疗经验转化为 AI 辅助决策系统,接入大模型后,进一步优化该系统,为中医师提供更智能的辅助诊断建议,提升中医诊疗服务的质量和效率。

智云健康

将DeepSeek-R1模型接入“智云大脑”,以增强数据挖掘能力和数字化慢病管理效率。通过大模型对海量的医疗数据进行分析和挖掘,能够更精准地预测疾病风险,为慢病患者提供个性化的健康管理方案,提高慢病管理的效果和效率。

  • 医药研发与生产类

复星医药

发布的自主研发的 PharmAID 决策智能体平台,接入 Deepseek-R1 推理大模型以及全球多个专业临床资讯和管线数据平台。在新药分子结合点位预测、构象预测、结合机制分析、毒理优化、医学写作、临床信息萃取等方面提升药物研发效率,加速科研成果转化。其医药健康领域内容生成准确率比通用大模型高 50% 左右,数据更新周期为 T+1。

海正药业

接入 DeepSeek-R1 模型到 HisunAI,IT 部门组织培训分享解读和 AI 实用技巧,期望通过与 AI 制药公司战略合作,助力新药研发突破技术壁垒,推进人工智能在药物研发阶段的应用落地。

此外,恒瑞医药

高调宣布将DeepSeek人工智能模型纳入管理层考核体系,以推动其在医疗领域的应用。恒瑞医药成立专项工作小组,推动DeepSeek在药物研发、临床诊断等领域的落地,借助大模型的技术优势,加速药物研发进程,提高研发成功率。

医渡科技

宣布已将DeepSeek整合至自主研发的“AI医疗大脑”YiduCore,旨在提升医疗健康产业的AI应用规模和创新实践。YiduCore接入DeepSeek后,已处理超55亿份医疗记录,覆盖2800家医院,有效打通研发与临床数据壁垒,加速了药物研发进程。

罗氏制药

与DeepSeek合作,利用其大模型技术优化药物研发流程。通过大模型对药物靶点的筛选和预测,能够更快速地发现潜在的药物靶点,缩短药物研发周期,降低研发成本,提高研发效率。

强生公司

积极探索大模型在医疗设备和医疗器械领域的应用。通过将大模型与医疗设备相结合,实现设备的智能化升级,提高设备的诊断准确性和治疗效果,为患者提供更优质的医疗产品和服务。

03 大模型接入对医药领域的影响

  • 提升医疗服务质量与效率

在医院诊疗中,大模型辅助医生进行疾病诊断,减少误诊漏诊。通过快速分析患者的症状、病史、检查检验结果等信息,提供诊断建议和治疗方案参考,缩短诊断时间,让患者得到及时有效的治疗。在医疗服务流程上,优化预约挂号、缴费、取药等环节,实现智能化、自动化,减少患者等待时间,提升就医体验。

  • 优化医疗资源配置

通过大模型对医疗数据的分析和挖掘,能够更精准地预测疾病风险和患者需求,为医疗机构提供科学的决策依据,优化医疗资源配置。

  • 推动医疗行业创新变革

大模型在药物研发中的应用,能够加速药物研发进程,提高研发成功率,推动医药创新,促使医疗行业产生新的商业模式和服务模式。如互联网医疗的发展,借助大模型实现远程诊断、智能问诊、健康管理等服务,打破地域限制,让患者随时随地享受医疗服务。同时,激发医疗科技创新,推动医疗设备智能化、医疗数据智能化应用等领域的发展。

  • 促进医疗数据的共享与利用

大模型的应用能够促进医疗数据的共享与利用,提高医疗数据的价值。例如,通过大模型对医疗数据的分析和挖掘,能够发现更多的疾病规律和治疗方案,为医学研究和临床实践提供更多的参考和借鉴。

  • 加速药物研发进程

药物研发是一个漫长且高成本的过程。大模型可在药物靶点发现、药物分子设计、临床试验设计等多个环节发挥作用。利用大模型对生物数据的分析挖掘,快速找到潜在药物靶点;通过模拟药物分子与靶点的相互作用,设计更有效的药物分子结构,缩短研发周期,降低研发成本,提高新药研发的成功率。

04 时代浪潮下的思考与展望

  • 数据安全与隐私保护至关重要

随着大模型在医药领域的广泛应用,大量医疗数据被收集和使用。医疗数据涉及患者的隐私和敏感信息,一旦泄露将对患者造成严重伤害。企业和医疗机构必须加强数据安全管理,采用加密技术、访问控制、数据脱敏等手段,确保数据的安全性和隐私性。同时,政府应加强相关法律法规的制定和监管,规范数据的使用和管理。

  • 建立标准化评估体系是关键

大模型的应用效果需要进行科学的评估和验证。医药领域应建立标准化的评估体系,对大模型的应用效果进行评估和验证。通过标准化的评估体系,能够更准确地评估大模型的应用效果,为医药领域的大模型应用提供科学的决策依据。

  • 技术边界与伦理争议

当下热潮下还需明确AI并非万能,药物最终需通过临床试验验证;“算法黑箱”可能影响医疗决策的可解释性,需平衡效率与透明度。

  • 行业分化可能进一步加剧

头部企业如恒瑞已建立算力平台支持模型调用,而中小药企多处于“评估阶段”。技术门槛降低反而可能加速马太效应,挤压缺乏AI能力的企业生存空间。

  • 跨领域合作是趋势

医药领域接入大模型需要医学、计算机科学、数学等多领域专业人才的合作。医疗机构、医药企业与科研院校、科技公司加强合作已成为必然。通过整合各方资源和优势,共同攻克技术难题,推动大模型在医药领域的创新应用。例如,医院提供临床数据和应用场景,科技公司提供技术支持,科研院校进行基础研究和人才培养,形成产学研用协同创新的良好生态。

  • 需持续关注技术发展与人才培养

人工智能技术发展迅速,医药领域应持续关注大模型技术的新进展,及时引入新技术、新方法,提升自身的竞争力。同时,加大对复合型人才的培养力度,培养既懂医学又懂人工智能技术的专业人才,为行业的发展提供人才支撑。高校和职业院校应优化相关专业设置,加强课程建设,开展实践教学,为行业输送合格的人才。

总之,尽管AI大模型技术为医药领域带来了巨大的变革机遇,不断推动医药领域的智能化发展,但加强数据安全与隐私保护、推动跨学科合作、建立标准化的评估体系、加强人才培养也同样不容忽视。为患者提供更优质安全的医疗服务,助力医疗行业长远发展才是根本!

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值