图像的手绘效果代码演示以及原理,嵩天老师MOOC实例

原创 2018年04月15日 14:01:35


我们平时所用的彩色图像是RGB色(即每个像素由红绿蓝#123456 组成)
1. 可以把一张图像相当于一个二维矩阵,在矩阵中每一个一维数组相当于像素点,即(xx,yy,zz). 
2. 我们只需要改变对应像素点的对应一维数组的值,就可以对一张图像色彩进行操作


实例:

1.这是一个普通的把一张彩色图片通过对它每一个像素点的操作变成它的相反的颜色的

from PIL import Image
import numpy as np
a=np.array(Image.open('001.jpg'))
print(a.shape,a.dtype)
b=[255,255,255]-a        //取值为(0-255)
im=Image.fromarray(b.astype('uint8'))
im.save('002.jpg')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

2. 这是图像中的一些黑白变换:

from PIL import Image
import numpy as np
a=np.array(Image.open('001.jpg').convert('L'))#.convert是变成黑白的

b=255-a#在对应的颜色通道减去他自己变成黑白底片的效果
im=Image.fromarray(b.astype('uint8'))
im.save('003.jpg')


c=(100/255)*a+150#区间变换,颜色比较淡的灰度的图片
im=Image.fromarray(c.astype('uint8'))
im.save('004.jpg')

d=255*(a/255)**2#像素平方,颜色比较深的图
im=Image.fromarray(d.astype('uint8'))
im.save('005.jpg')

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

3. 图像的手绘效果的变换:

先上代码:

from PIL import Image
import numpy as np
a=np.array(Image.open('测试.jpg').convert('L')).astype('float')

depth=10                        #(0-100)
grad=np.gradient(a)             #取图像灰度的梯度值
grad_x,grad_y=grad              #分别取横纵图像的梯度值
grad_x=grad_x*depth/100.
grad_y=grad_y*depth/100.
A=np.sqrt(grad_x**2+grad_y**2+1.)
uni_x=grad_x/A
uni_y=grad_y/A
uni_z=1./A

vec_el=np.pi/2.2                        #光源的俯视角度,弧度值
vec_az=np.pi/4                          #光源的方位角度,弧度值
dx=np.cos(vec_el)*np.cos(vec_az)        #光源对x轴的影响
dy=np.cos(vec_el)*np.sin(vec_az)        #光源对y轴的影响
dz=np.sin(vec_el)                       #光源对z轴的影响

b=255*(dx*uni_x+dy*uni_y+dz*uni_z)      #光源归一化
b=b.clip(0,255)

im=Image.fromarray(b.astype('uint8'))
im.save('手绘效果.jpg')    
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

代码解析:

模拟光源 

根据灰度变化来模拟人类视觉的远近程度

  • 设计一个位于图像斜上方的虚拟光源
  • 光源相对于图像的俯视角为Elevation, 方位角为Azimuth
  • 建立光源对个点梯度值的影响函数
  • 运算出各点的新像素值 



爬虫MOOC 第一周 入门

Python网络爬虫与信息提取 讲师:嵩天 给出了五个爬虫实例,很简单
  • qq_27469517
  • qq_27469517
  • 2017-03-09 22:26:58
  • 675

Python-数据分析与展示学习笔记(一)

前言 Numpy库 ndarray属性 ndarray创建方法 ndarray维度变换 ndarray数据类型变换 ndarray切片索引 ndarray运算 CSV文件局限于一维二维数据 多维...
  • ztx_Alan
  • ztx_Alan
  • 2018-02-09 11:57:29
  • 145

Python学习视频教程(哈工大、嵩天)

  • 2018年01月31日 15:38
  • 199B
  • 下载

【MOOC】Python机器学习应用-北京理工大学 - 学期课程导学

1.机器学习简介1.1.机器学习的目的机器学习是实现人工智能的手段,其主要研究内容是如何利用数据或经验进行学习,改善具体算法的性能• 多领域交叉,涉及概率论、统计学,算法复杂度理论等多门学科• 广泛应...
  • linzch3
  • linzch3
  • 2017-06-06 16:04:32
  • 2740

Python网络爬虫与信息提取 嵩天-Requests库入门01

  • 2017年08月21日 14:21
  • 2.26MB
  • 下载

python网络爬虫与信息采取之解析网页(三)---- BeautifulSoup库的导航树实例

上篇我们讲到了通过标签的名称和属性来查找标签的findAll(),本篇将讲解如何通过标签在文档中的位置进行查找------导航树 一篇文章,可以将其标签分为子标签,父标签和兄弟标签。而导航树的功能就是...
  • qq_38329811
  • qq_38329811
  • 2017-08-12 15:27:43
  • 162

Python爬虫学习笔记之requests库实战(与嵩天老师课程同步)

总结: 1.模拟浏览器访问 一些被爬取的网站在收到get请求时会检查get头部信息,默认python会设为requests库,当网站检测到这个请求是一个爬虫的时候,就会拒绝此次响应。 解决方法:...
  • LitaVadaski
  • LitaVadaski
  • 2018-02-05 18:06:40
  • 125

Python网络爬虫与信息提取(二):网络爬虫之提取

此系列笔记来源于 中国大学MOOC-北京理工大学-嵩天老师的Python系列课程 转载自:http://www.jianshu.com/p/7b950b8a5966 4. Beautif...
  • riba2534
  • riba2534
  • 2017-04-02 01:13:30
  • 1508

中国大学MOOC·Python网络爬虫与信息提取(二)——五个实例分析

一、京东商品信息的爬取这个很简单,直接上代码import requests url='https://item.jd.com/5181380.html' try: r = requests.g...
  • xiaotang_sama
  • xiaotang_sama
  • 2017-09-04 21:11:23
  • 409
收藏助手
不良信息举报
您举报文章:图像的手绘效果代码演示以及原理,嵩天老师MOOC实例
举报原因:
原因补充:

(最多只允许输入30个字)