乘法逆元
数论数学——乘法逆元
NephrenRuqInsania
这个作者很懒,什么都没留下…
展开
-
[NOIO #2] 游戏
首先有一个结论——二项式反演用 f(n)f(n)f(n) 表示钦定选择了 nnn 个的方案数, g(n)g(n)g(n) 表示实际选择了 nnn 个数的方案,那么有f(n)=∑i=nm(−1)n−i(in)g(i)f(n)=\sum_{i=n}^m (-1)^{n-i}\binom{i}{n}g(i)f(n)=i=n∑m(−1)n−i(ni)g(i)g(n)=∑i=nm(−1)n−i(in)f(i)g(n)=\sum_{i=n}^m (-1)^{n-i}\binom{i}{n}f(i)g(n)=原创 2020-12-03 10:03:33 · 251 阅读 · 0 评论 -
扩展中国剩余定理
扩展中国剩余定理(excrt\boldsymbol{excrt}excrt)是用来解决同余方程组的问题的,我们之前说过中国剩余定理,但是他有一个应用的限制就是lcm{pi}=1\boldsymbol{lcm\{p_i\}=1}lcm{pi}=1,但是如果某个恶心的出题人要求这个lcm{pi}≠1\boldsymbol{lcm\{p_i\}\neq 1}lcm{pi}=1怎么办呢?你就可以用...原创 2020-04-21 18:43:58 · 252 阅读 · 1 评论 -
中国剩余定理
中国剩余定理(孙子定理)(CRT\boldsymbol{CRT}CRT)是用来解决韩信点兵类问题的,也就是求关于xxx的方程{x≡a1 mod p1x≡a2 mod p2⋯x≡an mod pn\begin{cases}\boldsymbol{x\equiv a_1 \bmod p_1}\\\boldsymbol{x\equiv a_2 \bmod p_2}\\\qquad\cdots ...原创 2020-04-12 14:07:22 · 172 阅读 · 0 评论 -
扩展欧几里得
我在很久很久以前写过这篇文章但是因为自己特别菜当时不会LaTeX\LaTeXLATEX,而且一些地方理解不够深入现在来做一下简单修改扩展欧几里得算法(exgcdexgcdexgcd)可以用来求下面这个关于x,yx,yx,y的不定方程的最小整数解ax+by=gcd(a,b)ax+by=\gcd(a,b)ax+by=gcd(a,b)我们回忆一下,我们之前使用辗转相除法求gcd\gcdgcd...原创 2020-04-09 18:42:08 · 186 阅读 · 0 评论 -
[SDOI2013] 随机数生成器
传送门这道题就是推大式子啊我们发现最后的XnX_nXn的nnn可能会特别大所以我们要尝试简化那么我们联想到等比数列注:为了表达简便,下文所有式子都是在 mod p\bmod pmodp意义下的设(Xi+1+c)=a(Xi+c)(X_{i+1}+c)= a(X_i+c)(Xi+1+c)=a(Xi+c)Xi+1+c=aXi+acX_{i+1}+c=aX_i+acXi+1+c=a...原创 2020-03-10 16:06:42 · 196 阅读 · 0 评论 -
BSGS算法
Baby Step Gaint Step算法这个算法是解决什么的呢?求关于yyy的方程xy≡z ( mod p)x^y\equiv z\ (\bmod\ p)xy≡z (mod p)的最小整数解其中保证(x,p)=1(x,p)=1(x,p)=1其实还是挺暴力的…为了便于解决,我们把yyy表示成im−jim-jim−j的形式那么原来的式子就...原创 2020-03-10 14:17:09 · 273 阅读 · 0 评论 -
[BJOI2019] 光线
传送门zhei题…小清新数论题题意就不说了思路是什么?主要就是我们考虑,一层一层的合并,比如说,我们先把第2块的反射率和透射率算出来,然后再和第三块合成一块玻璃然后再算,一直到第nnn块玻璃但是注意合并之后的玻璃上下表面的反射率是不一样的,所以我们只需要算下表面的反射率和上表面的透射率然后就没了下面来推式子设AAA是之前合并的玻璃的上表面的透射率,BBB下表面的反射率那么当我...原创 2020-02-11 10:30:10 · 142 阅读 · 0 评论 -
乘法逆元进阶([模板]乘法逆元 2)
题目链接简单说下题意,给你一个长度为nnn数列aaa,kkk,ppp,让你求∑i=1nkiaimod p\sum_{i=1}^n {\frac{k^i}{a_i}} mod \ pi=1∑naikimod p这道题很明显是一个乘法逆元的题,因为我们要对分母取模首先我们很容易想到的是给每个aia_iai都求一下逆元,复杂度是O(nlogp)O(nlogp)O(n...原创 2020-02-05 14:44:09 · 1206 阅读 · 5 评论 -
乘法逆元初探(扩展欧几里得)
情境引入众所周知,有一个神奇的函数叫做gcd,中文名叫最大公约数算法极其简单int gcd(int a,int b){ if(!b)return a; return gcd(b,a%b);}这种计算gcd的方法往往被称为辗转相除,但是,他的学名叫做“欧几里得算法”但是,欧几里得这个数学家可只想用一个gcd来折磨人于是,他又研究出一个叫做exgcd的东西,学名“扩展欧...原创 2019-04-20 15:08:31 · 587 阅读 · 2 评论 -
乘法逆元初探(快速幂算法,线性算法)
问题引入众所周知,有一个神奇的东西,叫做“组合数”,简称C,在各种数论题里常常出现同样众所周知,组合数的公式是C(n,m)=n!/((n-m)!*m!)但是因为这个数可能很大,连传说中的__int128都存不下,所以我们往往需要一个模数所以组合数的公式就变成了C(n,m)=n!/((n-m)!*m!)%p这时候,问题就来了,我们都知道(a/b)%p!=a%p/b%p,这时候,我们就需...原创 2019-04-20 11:03:53 · 397 阅读 · 0 评论