期望基本概念和性质

数学期望有两种表示方法,分别是离散型和连续型

离散型

最开始接触数学期望应该就是这种表示方法
我们知道,期望的定义是 E ( x ) = ∑ i = 1 n x i p ( x i ) E(x)=\sum_{i=1}^n x_ip(x_i) E(x)=i=1nxip(xi),即每个值 x i x_i xi乘上他出现的概率 p ( x i ) p(x_i) p(xi)
那么,我们可以用 n n n个点 ( x i , p ( x i ) ) (x_i,p(x_i)) (xi,p(xi))来表示

连续型

我们定义一个概率密度函数 f ( x ) f(x) f(x),其中需要满足对于任意的 a < b a<b a<b满足
∫ a b f ( x ) d ⁡ x = p ( a , b ) \int_{a}^{b}f(x)\operatorname{d}x=p(a,b) abf(x)dx=p(a,b)
其中 p ( a , b ) p(a,b) p(a,b)表示出现在 [ a , b ] [a,b] [a,b]内的概率
那么我们定义
E ( x ) = ∫ − ∞ ∞ x f ( x ) d ⁡ x E(x)=\int_{-\infty}^{\infty}xf(x)\operatorname{d}x E(x)=xf(x)dx
就表示整个问题的期望
这个方法同样可以扩展到两个及以上的变量

期望的性质

X , Y X,Y X,Y为两个独立的事件, C C C是常数,则有
1. E ( C ) = C E(C)=C E(C)=C ,证明是显然的
2. E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y)
证明:
x , y x,y x,y的概率密度函数为 f ( x , y ) f(x,y) f(x,y)
E ( X + Y ) = ∬ − ∞ ∞ ( x + y ) f ( x , y ) d ⁡ x d ⁡ y = ∬ − ∞ ∞ x f ( x , y ) d ⁡ x d ⁡ y + ∬ − ∞ ∞ y f ( x , y ) d ⁡ x d ⁡ y = E ( X ) + E ( Y ) \begin{aligned} E(X+Y)&=\iint_{-\infty}^{\infty}(x+y)f(x,y)\operatorname{d}x\operatorname{d}y\\ &=\iint_{-\infty}^{\infty}xf(x,y)\operatorname{d} x\operatorname{d} y+\iint_{-\infty}^{\infty}yf(x,y)\operatorname{d} x\operatorname{d} y \\ &=E(X)+E(Y) \end{aligned} E(X+Y)=(x+y)f(x,y)dxdy=xf(x,y)dxdy+yf(x,y)dxdy=E(X)+E(Y)

他的意义就是,两个事件合并到一起的期望等于两个事件的期望之和
比如说扔一个骰子的期望是 3.5 3.5 3.5,那么扔两个骰子的期望就是 7 7 7

3. E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)
证明:
x x x的概率密度函数为 f ( x ) f(x) f(x) y y y的概率密度函数为 g ( y ) g(y) g(y),因为 X , Y X,Y X,Y相互独立,所以 f ( x , y ) = f ( x ) g ( y ) f(x,y)=f(x)g(y) f(x,y)=f(x)g(y)
E ( X Y ) = ∬ − ∞ ∞ x y f ( x ) g ( y ) d ⁡ x d ⁡ y = ∫ − ∞ ∞ y g ( y ) ( ∫ − ∞ ∞ x f ( x ) d ⁡ x ) d ⁡ y = ∫ − ∞ ∞ y g ( y ) E ( X ) d ⁡ y = E ( X ) ∫ − ∞ ∞ y g ( y ) d ⁡ y = E ( X ) E ( Y ) \begin{aligned} E(XY)&=\iint_{-\infty}^{\infty}xyf(x)g(y)\operatorname{d} x\operatorname{d} y\\ &=\int_{-\infty}^{\infty}yg(y)(\int_{-\infty}^{\infty}xf(x)\operatorname{d} x)\operatorname{d} y\\ &=\int_{-\infty}^{\infty}yg(y)E(X)\operatorname{d}y\\ &=E(X)\int_{-\infty}^{\infty}yg(y)\operatorname{d}y \\ &=E(X)E(Y) \end{aligned} E(XY)=xyf(x)g(y)dxdy=yg(y)(xf(x)dx)dy=yg(y)E(X)dy=E(X)yg(y)dy=E(X)E(Y)
实际意义就是扔两个骰子的点数乘起来等于分别算出来再乘起来就是 3. 5 2 3.5^2 3.52

那么结合1,3我们还可以得到
4. E ( C ⋅ X ) = C ⋅ E ( X ) E(C\cdot X)=C\cdot E(X) E(CX)=CE(X)

  • 8
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
量子力学的五个基本原理(也称五大公理)是在量子力学中描述粒子行为和量子系统性质的基础原则。这些原理是量子力学理论框架的基础,提供了一种数学表示方法,使我们能够理解和预测量子系统的行为。 1. 状态空间公理 状态空间公理指出,量子态可以用Hilbert空间中的向量表示。Hilbert空间是一个数学上的概念,它是一个具有内积和范数的无限维向量空间。在量子力学中,一个粒子或者系统的状态可以用一个Hilbert空间中的向量(即态矢量)来表示。这个向量可以用来计算各种可观测量的期望值和概率等物理量。 2. 观测公理 观测公理指出,观测会导致量子态的坍塌,使得测量结果成为一个确定值。在量子力学中,我们不能确定粒子的位置和动量等物理量,而只能得到它们的概率分布。当我们对一个量子系统进行测量时,它的量子态会坍塌成一个确定值,并且我们只能得到这个值的某个可能性。这个公理描述了量子力学中测量的本质。 3. 动力学公理 动力学公理指出,量子系统的演化可以通过Schrödinger方程描述。Schrödinger方程是描述量子系统时间演化的基本方程。在量子力学中,我们用态矢量来描述量子系统的状态,而Schrödinger方程描述了这个态矢量随时间的演化规律。这个公理描述了量子系统在时间演化中的行为。 4. 统计公理 统计公理指出,量子力学中的测量结果是概率性的,概率由Born规则给出。Born规则是一条非常重要的规则,它描述了在量子力学中如何计算测量结果的概率。根据Born规则,测量结果的概率等于态矢量在相应本征态上的投影的模长的平方。这个公理解释了量子力学中概率的来源。 5. 可观测量公理 可观测量公理指出,可观测量是由Hermitian算符表示的,其本征值是测量结果的可能取值。在量子力学中,可观测量是能够被测量的物理量,如位置、动量和自旋等。根据这个公理,我们可以用Hermitian算符来表示可观测量,并且它的本征值是测量结果的可能取值。这个公理解释了量子力学中可观测量的数学表示方式。 总的来说,量子力学的五个基本原理是描述量子系统行为的基本原则,提供了一种数学表示方法,使我们能够理解和预测量子系统的行为。这些基本原理非常重要,对于深入理解量子力学以及应用量子力学在各个领域都非常有帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值