伽马函数

 

该函数由欧拉(22岁)在1729年得出。

 

实数域上的伽马函数:

 

由上式我们可以看出为什么会有伽马函数:为了把阶乘数列推广到实数上。

 

复数域上的伽马函数:

 

 常用性质:

Γ(x+1)=xΓ(x)

,B(a,b)称为第一型欧拉积分,伽马函数是第二型欧拉积分。

 

伽马分布:

余元公式:

对于想x>0 ,伽马函数是严格凸函数

 

伽马函数是亚纯函数,在复平面上,除了零和负整数点以外,它全部解析,而伽马函数在-k处的留数为:

 

当x取的数越大,Gamma 函数就越趋向于 Stirling 公式,所以当x足够大时,可以用Stirling 公式来计算Gamma 函数值。

 

Digamma函数:

 

,是欧拉常数

 

转载于:https://www.cnblogs.com/huangshiyu13/p/6149786.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值