欧拉Gamma函数、Beta函数、余元公式

目录

一,欧拉Gamma函数

1,Gamma函数

2,t^a * (1-t)^b的定积分

3,Gamma函数的高斯形式

4,sin πx

5,其他形式

二,余元公式

1,余元公式

2,应用

三,欧拉Beta函数

1,Beta函数

2,和Gamma函数的关系

3,Beta函数的性质

四,Gamma函数的导数

1,拆分

2,可导

3,Gamma函数的导数

4,Gamma函数在x=1处的导数


一,欧拉Gamma函数

1,Gamma函数

\Gamma(x)=\int_{0}^{+\infty} e^{-t} t^{x-1} d t

\Gamma(x+1)=x\Gamma(x)

\Gamma(n+1)=n!

2,t^a * (1-t)^b的定积分

\begin{aligned} & \int_{0}^{1} t^{a}(1-t)^{b+1} d t \\ =& \int_{0}^{1}(1-t)^{b+1} \cdot \frac{1}{a+1} \cdot d\left( t^{a+1}\right) \\ =&-\frac{1}{a+1} \int_{0}^{1} t^{a+1} \cdot d\left((1-t)^{b+1}\right) \\ =& \frac{b+1}{a+1} \int_{0}^{1} t^{a+1}(1-t)^{b} d t \end{aligned}

不断的利用此式子,把b降为0即可得到,

\int_{0}^{1} t^{a}(1-t)^{b+1} d t=\frac{b+1}{a+1} \cdot \frac{b}{a+2} \cdot \frac{b-1}{a+3} \cdot \cdots \frac{1}{a+b+1} \cdot \int_{0}^{1} t^{a+b+1} d t

\int_{0}^{1} t^{a}(1-t)^{b} d t=\frac{a! * b!}{(a+b+1)!}

3,Gamma函数的高斯形式

\Gamma(x)=\lim _{n \rightarrow+\infty} \frac{n !}{x(x+1) \cdots \cdot(x+n)} \cdot n^{x}

证明:

4,sin πx

\sin \pi x=\pi x \lim _{n \rightarrow+\infty} \prod ^n_{k=1}\left(1-\frac{x^{2}}{k^{2}}\right)

证明:

5,其他形式

(1)

\Gamma(x)=\int_{0}^{+\infty} e^{-t} t^{x-1} d t

(2)

二,余元公式

1,余元公式

\Gamma(x) \Gamma(1-x)=\frac{\pi}{\sin \pi x}

 证明:

\Gamma (x) \Gamma (1-x) =\lim_{n \rightarrow+\infty} \frac{n ! \cdot n^{x} \cdot n ! \cdot n^{1-x}}{x(x+1) \cdots(x+n) (1-x)(2-x) \cdots(n+1-x)}

=\frac{1}{x\lim _{n\rightarrow+\infty} \left(\frac{1-x^{2}}{1^{2}} \cdot \frac{2^2-x^{2}}{2^{2}} \cdots \ldots \frac{n^{2}-x^{2}}{n^{2}}\right)}=\frac{\pi}{\sin \pi x}

2,应用

(1)\Gamma(\frac{1}{2})=\sqrt \pi

即 \int_{0}^{+\infty} e^{-t} t^{-1/2} d t=\sqrt\pi

(2)上式中,令t=u^2,则

\int_0^{+\infty}e^{-u^2}du=\frac{\sqrt\pi}{2}

(3)\Gamma(n+\frac{1}{2})=\frac{(2n-1)!!\sqrt\pi}{2^n}

三,欧拉Beta函数

1,Beta函数

B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t, \quad x>0, y>0

2,和Gamma函数的关系

B(x,y)=\frac{\Gamma (x)\Gamma(y)}{\Gamma(x+y)}

证明:

(1)取t=sin^2\theta,则

B(x, y)=2 \int_{0}^{\frac{\pi}{2}}(\sin \theta)^{2 x-1}(\cos \theta)^{2y-1} d \theta

(2)\Gamma(x) \Gamma(y)=\int_{0}^{+\infty} e^{-u} u^{x- 1} d u \int_{0}^{+\infty} e^{-v} v^{y-1} d v

u=a^2,v=b^2,则

\begin{aligned} \Gamma(x) \Gamma(y)&=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\left(\alpha^{2}+b^{2}\right)}|a|^{2 x-1}|b|^{2 y-1} d a d b, \quad a=r \cos \theta, b=r \sin \theta\\ &=\int_{0}^{2 \pi} \int_{0}^{+\infty} e^{-r^{2}}|r \cos \theta|^{2 x-1}|r \sin \theta|^{2y-1} r d r d \theta\\ &=\int_{0}^{+\infty} e^{-r^{2}} r^{2 x+2 y-1} d r \int_{0}^{2 \pi}|\cos \theta|^{2 x- 1}|\sin \theta|^{2 y-1} d \theta\\ &=\frac{1}{2} \Gamma(x+y) \times 4 \int_{0}^{\frac{\pi}{2}} \cos ^{2 x-1} \theta \sin ^{2y-1} \theta d \theta\\ &=\Gamma(x+y) B(x, y) \end{aligned}

3,Beta函数的性质

 

四,Gamma函数的导数

1,拆分

\Gamma(x)=\int_{0}^{+\infty} e^{-t} t^{x-1} d t  =\int_{0}^{1} e^{-t} t^{x-1} d t+\int_{1}^{+\infty} e^{-t} t^{x-1} d t

其中\int_{0}^{1} e^{-t} t^{x-1} d t显然可导

2,可导

f(x)=\int_{1}^{+\infty} e^{-t} t^{x-1} d t,则f(x)严格递增

\begin{aligned} \lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=&\quad \lim _{\Delta x \rightarrow 0} \int_{1}^{+\infty} e^{-t} t^{x-1} \frac{t^{\Delta x}-1}{\Delta x} d t\\ &=\int_{1}^{+\infty} e^{-t} t^{x-1} \ln t d t \end{aligned}

\therefore f'(x)=\int_{1}^{+\infty} e^{-t} t^{x-1} \ln t d t

3,Gamma函数的导数

 \Gamma'(x)=\int_{0}^{+\infty} e^{-t} t^{x-1} \ln t d t

\Gamma^{(n)}(x)=\int_{0}^{+\infty} e^{-t} t^{x-1} (\ln t)^n d t

4,Gamma函数在x=1处的导数

(1)

\Gamma'(1)=\int_{0}^{+\infty} e^{-t} \ln t d t

(2)

\Gamma'(1)=\int_{0}^{1} \frac{e^{-t}+e^{-1/t}-1}{t} d t

证明:

由(1)可得,\Gamma'(1)=\lim_{n\to \infty }\int_{1/n}^{n} e^{-t} \ln t d t=\lim_{n\to \infty }(I_n+J_n)

其中I_n=\int_{1/n}^{1} e^{-t} \ln t d t,J_n=\int_{1}^{n} e^{-t} \ln t d t

(3)

由(2),用换元法可得

\Gamma'(1)=\int_{1}^{+\infty} \frac{e^{-t}+e^{-1/t}-1}{t} d t=\frac{1}{2}\int_{0}^{+\infty} \frac{e^{-t}+e^{-1/t}-1}{t} d t

(4)

(5)

参考:欧拉常数

  • 10
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值