Bzoj1233 [Usaco2009Open]干草堆tower

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 811  Solved: 378

Description

奶牛们讨厌黑暗。 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 。一共有N大包的干草(1<=N<=100000)(从1到N编号)依靠传送带连续的传输进牛棚来。第i包干草有一个 宽度W_i(1<=w_i<=10000)。所有的干草包的厚度和高度都为1. Bessie必须利用所有N包干草来建立起干草堆,并且按照他们进牛棚的顺序摆放。她可以相放多少包就放 多少包来建立起tower的地基(当然是紧紧的放在一行中)。接下来他可以放置下一个草包放在之前一级 的上方来建立新的一级。注意:每一级不能比下面的一级宽。她持续的这么放置,直到所有的草包都被安 置完成。她必须按顺序堆放,按照草包进入牛棚的顺序。说得更清楚一些:一旦她将一个草包放在第二级 ,她不能将接下来的草包放在地基上。 Bessie的目标是建立起最高的草包堆。

Input

第1行:一个单一的整数N。 第2~N+1行:一个单一的整数:W_i。

Output

第一行:一个单一的整数,表示Bessie可以建立的草包堆的最高高度。

Sample Input

3
1
2
3

Sample Output

2
输出说明:
前两个(宽度为1和2的)放在底层,总宽度为3,在第二层放置宽度为3的。
+----------+
| 3 |
+---+------+
| 1 | 2 |
+---+------+

HINT

 

Source

 

单调队列优化DP

要满足解最优,每次加草堆时,原有堆的底层宽度应该尽量小。

 

设f[i]表示将第i~n个干草堆全使用以后,堆底层的最小宽度。

得到DP方程:  f[i]=min(f[i],sum[j-]-sum[i-1]) ,要求满足sum[j-]-sum[i-1]>=f[j]

每堆叠一层,高度就可以+1

然而O(n^2)复杂度爆炸,需要单调队列优化。

 

 1 /*By SilverN*/
 2 #include<iostream>
 3 #include<cstdio>
 4 #include<algorithm>
 5 #include<cstring>
 6 #include<cmath>
 7 using namespace std;
 8 const int mxn=100010;
 9 int read(){
10     int x=0,f=1;char ch=getchar();
11     while(ch<'0' || ch>'9'){if(ch=='-')f=-1;ch=getchar();}
12     while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
13     return x*f;
14 }
15 int n;
16 int w[mxn];
17 int smm[mxn];
18 int q[mxn],hd,tl;
19 int f[mxn],h[mxn];
20 int main(){
21     int i,j;
22     n=read();
23     for(i=1;i<=n;i++)w[i]=read();
24     for(i=1;i<=n;i++){smm[i]=smm[i-1]+w[i];}
25     hd=tl=1;
26     q[hd]=n+1;
27     for(i=n;i;--i){
28         while(hd<tl && smm[q[hd+1]-1]-smm[i-1]>=f[q[hd+1]])hd++;
29         f[i]=smm[q[hd]-1]-smm[i-1];
30         h[i]=h[q[hd]]+1;
31         while(hd<tl && f[i]-smm[i-1]<f[q[tl]]-smm[q[tl]-1])tl--;
32         q[++tl]=i;
33     }
34     printf("%d\n",h[1]);
35     return 0;
36 }

 

转载于:https://www.cnblogs.com/SilverNebula/p/5974719.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值