bzoj-1233 [Usaco2009Open]干草堆tower

21 篇文章 0 订阅
10 篇文章 0 订阅

1233: [Usaco2009Open]干草堆tower**
题目链接
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 1030 Solved: 494
[Submit][Status][Discuss]
Description
奶牛们讨厌黑暗。 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 。一共有N大包的干草(1<=N<=100000)(从1到N编号)依靠传送带连续的传输进牛棚来。第i包干草有一个 宽度W_i(1<=w_i<=10000)。所有的干草包的厚度和高度都为1. Bessie必须利用所有N包干草来建立起干草堆,并且按照他们进牛棚的顺序摆放。她可以相放多少包就放 多少包来建立起tower的地基(当然是紧紧的放在一行中)。接下来他可以放置下一个草包放在之前一级 的上方来建立新的一级。注意:每一级不能比下面的一级宽。她持续的这么放置,直到所有的草包都被安 置完成。她必须按顺序堆放,按照草包进入牛棚的顺序。说得更清楚一些:一旦她将一个草包放在第二级 ,她不能将接下来的草包放在地基上。 Bessie的目标是建立起最高的草包堆。

Input
第1行:一个单一的整数N。 第2~N+1行:一个单一的整数:W_i。

Output
第一行:一个单一的整数,表示Bessie可以建立的草包堆的最高高度。

Sample Input
3

1

2

3

Sample Output
2

输出说明:

前两个(宽度为1和2的)放在底层,总宽度为3,在第二层放置宽度为3的。

       +----------+

       |    3     |

       +---+------+

       | 1 |   2  |

       +---+------+

HINT
Source

题解
刚开始还以为是二分之类……

我们感性理解可以得到这样一个结论:对于最优放按,每层肯定都是达到满足的条件且最小的。
我们倒过来构造,每一层都要 上一层,因此,最高层要尽可能小,接下来每一层都同理。但是直接如果贪心每一层都都直接取能取到的最小值,会有问题,反例:

输入
5
9 7 2 1 7
输出
4
底层 9 第二层 7+2 第三层 1+7 ,贪心的话最高层会直接放上 7,那么最多只能叠两层。

我们考虑 DP。(注意:读入的 Wi W i 已经翻转过并构造前缀和 sumi s u m i
定义 g[i] g [ i ] f[i] f [ i ] 分别表示前 i 块砖最多能叠的层数,以及这一层最窄的宽度。
我们可以 N2 N 2 来求,但是太慢了。

k<j<i k < j < i 且从 j j 转移到 i,比 k k 转移到 i 更优秀,那么一定有以下两条性质:
f[j]sum[i]sum[j] f [ j ] ≥ s u m [ i ] − s u m [ j ] 因为 f[i]=sum[i]sum[t] f [ i ] = s u m [ i ] − s u m [ t ] t t 为上一状态)
也就是 f[j]+sum[j] 的值越大,能转移到的状态就越多。
f[k]+sum[k]f[j]+sum[j] f [ k ] + s u m [ k ] ≤ f [ j ] + s u m [ j ] 为了使得当前这层的宽度最小,上一状态要尽可能靠后,同时满足条件①。
如果有一个很靠后的状态而且满足条件①,那么之前的状态一定没有这个状态优秀(转移后效果更优秀,且能转移到的范围更大, j j 自然比 k 好,所以留着 k k 就没有意义了)。

所以我们可以用单调队列来维护一个最优秀的上一状态,达到 O(1) 转移,那么时间复杂度就优化到了 O(N) O ( N )

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
using namespace std;
const int maxn=1e5+5;
int n,g[maxn],q[maxn],til,hea,s[maxn],f[maxn];
int rad()
{
    int ret=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9') ret=ret*10+ch-'0',ch=getchar();
    return ret*f;
}
int main()
{
    n=rad();
    for (int i=n;i>=1;--i) s[i]=rad();
    for (int i=1;i<=n;i++) s[i]+=s[i-1];
    for (int i=1;i<=n;i++)
    {
        while (hea<til&&s[i]>=f[q[hea+1]]+s[q[hea+1]]) ++hea;
        q[++til]=i;f[i]=s[i]-s[q[hea]];g[i]=g[q[hea]]+1;
        while (hea<til&&s[q[til]]+f[q[til]]<=s[q[til-1]]+f[q[til-1]]) q[til-1]=q[til--];
    }
    printf("%d\n",g[n]);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值