P2303 [SDOI2012] Longge 的问题

输入一个数据 n n n,求

∑ i = 1 n gcd ⁡ ( i , n ) \qquad \qquad \qquad \sum_{i=1}^{n}\gcd(i, n) i=1ngcd(i,n)

其中 n n n可以达到 2 32 2^{32} 232





题解:

原 式 = ∑ i = 1 n gcd ⁡ ( i , n ) = ∑ d ∣ n d ⋅ ∑ i = 1 n [ gcd ⁡ ( i , n ) = d ] ( 枚 举 公 约 数 , [ ] 为 单 位 函 数 ) = ∑ d ∣ n d ⋅ ∑ i = 1 ⌊ n / d ⌋ [ gcd ⁡ ( i , n d ) = 1 ] = ∑ d ∣ n d ⋅ ϕ ( ⌊ n d ⌋ ) \begin{aligned} \qquad\qquad\qquad 原式 &= \sum_{i=1}^{n}\gcd(i, n)\\ &= \sum_{d|n}^{d} \cdot \sum_{i=1}^{n}[\gcd(i, n)=d](枚举公约数, []为单位函数)\\ &= \boxed{\sum_{d|n}^{d} \cdot \sum_{i=1}^{ \lfloor {n/d} \rfloor } [\gcd(i, \frac{n}{d}) = 1] }\\ &= \sum_{d|n}^{d} \cdot \phi(\lfloor \frac{n}{d} \rfloor ) \end{aligned} =i=1ngcd(i,n)=dndi=1n[gcd(i,n)=d](,[])=dndi=1n/d[gcd(i,dn)=1]=dndϕ(dn)

枚 举 公 约 数 即 可 枚举公约数即可

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;

LL phi(LL n) {
	LL res = n;
	for (LL i = 2; i * i <= n; i++) {
		if (n % i == 0) res = res / i * (i - 1);
		while (n % i == 0) n /= i;
	}
	if (n > 1) res = res / n * (n - 1);
	return res;
}

LL cal(LL n) {
	LL res = 0, i = 1;
	for (i = 1; i * i < n; i++) {
		if (n % i == 0) {
			res += i * phi(n / i);
			res += n / i * phi(i);
		}
	}
	if (i * i == n) res += i * phi(i);
	return res;
}

int main() {
	LL x;
	cin >> x;
	cout << cal(x) << endl;
	return 0;
}
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页