【SDOI 2012】Longge的问题

【题目】

传送门

题目描述:

Longge 的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。

现在问题来了:给定一个整数 n n n,你需要求出 ∑ i = 1 n gcd ⁡ ( i , n ) \sum\limits_{i=1}^n\gcd(i,n) i=1ngcd(i,n)

输入格式:

一个整数,为 n n n

输出格式:

一个整数,为所求的答案。

样例数据:

输入
6

输出
15

说明:

对于 60 % 60\% 60% 的数据, 0 &lt; n ≤ 2 16 0&lt;n\le2^{16} 0<n216

对于 100 % 100\% 100% 的数据, 0 &lt; n ≤ 2 32 0&lt;n\le2^{32} 0<n232


【分析】

我们要求出

∑ i = 1 n gcd ⁡ ( i , n ) \sum_{i=1}^n\gcd(i,n) i=1ngcd(i,n)

枚举 gcd ⁡ \gcd gcd,将原式转化为

∑ d ∣ n d ∑ i = 1 n [ &ThickSpace; gcd ⁡ ( i , n ) = d &ThickSpace; ] \sum_{d|n}d\sum_{i=1}^n[\;\gcd(i,n)=d\;] dndi=1n[gcd(i,n)=d]

化成 gcd ⁡ = 1 \gcd=1 gcd=1 的形式

∑ d ∣ n d ∑ i = 1 n d [ &ThickSpace; gcd ⁡ ( i , n d ) = 1 &ThickSpace; ] \sum_{d|n}d\sum_{i=1}^{\frac{n}{d}}[\;\gcd(i,\frac{n}{d})=1\;] dndi=1dn[gcd(i,dn)=1]

一样的套路,发现后面是个欧拉函数,即

∑ d ∣ n d × φ ( d n ) \sum_{d|n}d\times \varphi(\frac{d}{n}) dnd×φ(nd)

所以我们就枚举 n n n 的所有约数,按照上式计算就行。

由于 n n n 过大,不能用线性筛算欧拉函数,我们就用一种 O ( n ) O(\sqrt n) O(n ) 的方法来计算。

补充一个小知识,即如何在 O ( n ) O(\sqrt n) O(n ) 的时间内计算 φ ( n ) \varphi(n) φ(n)
φ ( n ) \varphi(n) φ(n) 有另一种表达形式,即 φ ( n ) = n ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) ⋯ ( 1 − 1 p k ) \varphi(n)=n(1-\frac{1}{p_1})(1-\frac{1}{p_2})\cdots(1-\frac{1}{p_k}) φ(n)=n(1p11)(1p21)(1pk1) p i p_i pi n n n 的质因子)。
因此我们把 φ ( n ) \varphi(n) φ(n) 初值设为 n n n,然后枚举 n n n 的质因子,按照上面的式子乘起来就行了。


【代码】

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
long long phi(long long x)
{
	long long i,ans=x;
	for(i=2;i*i<=x;++i)
	{
		if(!(x%i))  ans=ans/i*(i-1);
		while(!(x%i))  x/=i;
	}
	if(x>1)  ans=ans/x*(x-1);
	return ans;
}
long long calc(long long x)
{
	long long i,ans=0;
	for(i=1;i*i<x;++i)
	  if(!(x%i))  ans+=i*phi(x/i)+(x/i)*phi(i);
	if(i*i==x)  ans+=i*phi(i);
	return ans;
}
int main()
{
	long long n;
	scanf("%lld",&n);
	printf("%lld",calc(n));
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值