快速判断能够被某个数整除

整数的表示方法

整数 n n n表示为 10 ∗ x + y 10*x+y 10x+y, 表示个位数字是 y y y,其他部分是 x x x
整数 n n n表示为 100 ∗ x + y 100*x+y 100x+y, 表示末两位为数是 y y y,其他部分是 x x x
整数 a b c d ‾ \overline{abcd} abcd表示是 1000 ∗ a + 100 ∗ b + 10 ∗ c + d 1000*a+100*b+10*c+d 1000a+100b+10c+d
整数 n n n的另一种表示: ∑ r = 0 n 1 0 r a r \sum_{r=0}^n10^ra_r r=0n10rar

2和5

判断方法

  • 一个整数的末位是偶数 ( 0 、 2 、 4 、 6 、 8 ) (0、2、4、6、8) (02468)的数能被2整除
  • 一个整数的末位是 0 0 0或者 5 5 5的数能被 5 5 5整除

证明

n = 10 ∗ x + y n=10*x+y n=10x+y
由于 2 ∣ y , 2 ∣ 10 2|y, 2|10 2∣y,2∣10
⇒ 2 ∣ ( 10 ∗ x + y ) ⇒ 2 ∣ n \Rightarrow2|(10*x+y)\Rightarrow2|n 2∣(10x+y)2∣n
对于 5 5 5的证明也同理.

推广

判断是否是 2 k 2^k 2k 5 k 5^k 5k,只需看最后k位即可

3和9

判断方法

  • 所有位数加起来是 3 3 3的倍数,即是
  • 所有位数加起来是 9 9 9的倍数,即是

证明

由于 1 0 n ≡ 1 m o d ( 3 ) 10^{n}\equiv1 mod(3) 10n1mod(3)
则有
3 ∣ n ⇔ 3 ∣ ( ∑ r = 0 1 0 r a r ) ⇔ 3 ∣ ( ∑ r = 0 n a r ) ⇔ 3 ∣ ( a 0 + a 1 + . . . + a n ) \begin{aligned} 3|n& \Leftrightarrow3|(\sum_{r=0}10^ra_r) \\ &\Leftrightarrow3|(\sum_{r=0}^na_r) \\ &\Leftrightarrow3|(a_0+a_1+...+a_n) \end{aligned} 3∣n3∣(r=010rar)3∣(r=0nar)3∣(a0+a1+...+an)
对于 9 9 9的证明也同理.

7,11,13的一个统一判别方法

判断方法

  • 将整数n从右到左每三位分隔开,比如 1234567891012 1234567891012 1234567891012分为 1 , 234 , 567 , 891 , 012 {1,234,567,891,012} 1,234,567,891,012进行错位相减 − 1 + 234 − 567 + 891 − 012 -1+234-567+891-012 1+234567+891012这个结果是 7 / 11 / 13 7/11/13 7/11/13的倍数,则原数也是.

证明

设正整数 n n n表示为 ( ∑ r = 0 n 100 0 r a r ) (\sum_{r=0}^n1000^ra_r) (r=0n1000rar), 由于 1001 = 7 ∗ 11 ∗ 13 1001=7*11*13 1001=71113
由于 1 0 3 ≡ ( − 1 ) m o d ( 7 ) 10^3\equiv(-1) mod(7) 103(1)mod(7)
则有
1 0 3 n ≡ ( − 1 ) m o d ( 7 ) 10^{3n}\equiv(-1) mod(7) 103n(1)mod(7) n是奇数
1 0 3 n ≡ ( + 1 ) m o d ( 7 ) 10^{3n}\equiv(+1) mod(7) 103n(+1)mod(7) n是偶数

7 ∣ n 7|n 7∣n
⇔ 7 ∣ ( ∑ r = 0 n 1 0 3 r a r ) \Leftrightarrow7|(\sum_{r=0}^n10^{3r}a_r) 7∣(r=0n103rar)
⇔ 7 ∣ ( ∑ r = 0 n ( − 1 ) r a r ) \Leftrightarrow7|(\sum_{r=0}^n(-1)^{r}a_r) 7∣(r=0n(1)rar)
⇔ 7 ∣ ( a 0 − a 1 + a 2 − a 3 . . . ) \Leftrightarrow7|(a_0-a_1+a_2-a_3...) 7∣(a0a1+a2a3...)
对于 11 , 13 11,13 11,13的证明也同理.

7

判断方法

n = 10 x + y n=10x+y n=10x+y, 若 x − 2 y x-2y x2y 7 7 7的倍数,原数也是。若 x x x仍然难以判断,可以继续对 x x x做这样的操作

证明

7 ∣ n 7|n 7∣n
⇔ 7 ∣ ( 10 x + y ) \Leftrightarrow7|(10x+y) 7∣(10x+y)
⇔ 7 ∣ ( 50 x + 5 y ) \Leftrightarrow7|(50x+5y) 7∣(50x+5y)
⇔ 7 ∣ ( x + 5 y ) \Leftrightarrow7|(x+5y) 7∣(x+5y)
⇔ 7 ∣ ( x − 2 y ) \Leftrightarrow7|(x-2y) 7∣(x2y)

11

判断方法

a b c d e f g . . . ‾ \overline{abcdefg...} abcdefg...做错位相减 β = a − b + c − d + e − f + g . . . \beta=a-b+c-d+e-f+g... β=ab+cd+ef+g... β \beta β是11的倍数,则原数也是。

证明

注意到
10 ≡ ( − 1 ) m o d ( 11 ) 10\equiv(-1) mod(11) 10(1)mod(11)

1 0 n ≡ ( − 1 ) m o d ( 11 ) 10^{n}\equiv(-1) mod(11) 10n(1)mod(11) n是奇数
1 0 n ≡ ( + 1 ) m o d ( 11 ) 10^{n}\equiv(+1) mod(11) 10n(+1)mod(11) n是偶数

11 ∣ n 11|n 11∣n
⇔ 11 ∣ ( ∑ r = 0 n 1 0 r a r ) \Leftrightarrow11|(\sum_{r=0}^n10^{r}a_r) 11∣(r=0n10rar)
⇔ 11 ∣ ( ∑ r = 0 n ( − 1 ) r a r ) \Leftrightarrow11|(\sum_{r=0}^n(-1)^{r}a_r) 11∣(r=0n(1)rar)
⇔ 11 ∣ ( a 0 − a 1 + a 2 − a 3 . . . ) \Leftrightarrow11|(a_0-a_1+a_2-a_3...) 11∣(a0a1+a2a3...)

13

判断方法

n = 10 x + y n=10x+y n=10x+y, 若 x + 4 y x+4y x+4y 13 13 13的倍数,原数也是。若 x x x仍然难以判断,可以继续对 x x x做这样的操作

证明

13 ∣ n 13|n 13∣n
⇔ 13 ∣ ( 10 x + y ) \Leftrightarrow13|(10x+y) 13∣(10x+y)
⇔ 13 ∣ ( 40 x + 4 y ) \Leftrightarrow13|(40x+4y) 13∣(40x+4y)
⇔ 13 ∣ ( x + 4 y ) \Leftrightarrow13|(x+4y) 13∣(x+4y)

17

判断方法

n = 10 x + y n=10x+y n=10x+y, 若 x − 5 y x-5y x5y 17 17 17的倍数,原数也是。若 x x x仍然难以判断,可以继续对 x x x做这样的操作

证明

17 ∣ n 17|n 17∣n
⇔ 17 ∣ ( 10 x + y ) \Leftrightarrow17|(10x+y) 17∣(10x+y)
⇔ 17 ∣ ( 120 x + 12 y ) \Leftrightarrow17|(120x+12y) 17∣(120x+12y)
⇔ 17 ∣ ( 120 x + 12 y − ( 17 ∗ 7 ) y ) \Leftrightarrow17|(120x+12y-(17*7)y) 17∣(120x+12y(177)y)
⇔ 17 ∣ ( 120 x + 12 y − 119 y ) \Leftrightarrow17|(120x+12y-119y) 17∣(120x+12y119y)
⇔ 17 ∣ ( x + 12 y ) \Leftrightarrow17|(x+12y) 17∣(x+12y)
⇔ 17 ∣ ( x − 5 y ) \Leftrightarrow17|(x-5y) 17∣(x5y)

19

判断方法

n = 10 x + y n=10x+y n=10x+y, 若 x + 2 y x+2y x+2y 19 19 19的倍数,原数也是。若 x x x仍然难以判断,可以继续对 x x x做这样的操作

证明

17 ∣ n 17|n 17∣n
⇔ 19 ∣ ( 10 x + y ) \Leftrightarrow19|(10x+y) 19∣(10x+y)
⇔ 19 ∣ ( 20 x + 2 y ) \Leftrightarrow19|(20x+2y) 19∣(20x+2y)
⇔ 19 ∣ ( x + 2 y ) \Leftrightarrow19|(x+2y) 19∣(x+2y)

末尾是1/3/7/9判断整除

一般性的规律

注意到对于 7 , 13 , 17 , 19 7,13,17,19 7,13,17,19这种难以直接判断的我们给出了一种可以每次去掉一位数的判断方法,这里我们给出一般性的结果

{ n = 10 x + y q = 10 c + d \left\{\begin{matrix} n=10x+y\\ q=10c+d \end{matrix}\right. {n=10x+yq=10c+d

假设我们要判断 n n n是否被 q q q整除,结论是我们只需要判断 x + y β x+y\beta x+yβ是否是 q q q的倍数即可, 其中 β \beta β
β = { 9 x + 1 , i f   n = 10 x+1 3 x + 1 , i f   n = 10 x+3 7 x + 5 , i f   n = 10 x+7 x + 1 , i f   n = 10 x+9 \beta=\left\{\begin{array}{ll}9x+1,&\mathrm{if~}n=10\text{x+1}\\3x+1,&\mathrm{if~}n=10\text{x+3}\\7x+5,&\mathrm{if~}n=10\text{x+7}\\x+1,&\mathrm{if~}n=10\text{x+9}\end{array}\right. β= 9x+1,3x+1,7x+5,x+1,if n=10x+1if n=10x+3if n=10x+7if n=10x+9

举例说明

23
  1. 由于 23 = 10 ∗ 2 + 3 = 10 x + 3 23=10*2+3=10x+3 23=102+3=10x+3
  2. β = 3 ∗ x + 1 = 3 ∗ 2 + 1 = 7 \beta=3*x+1=3*2+1=7 β=3x+1=32+1=7
  3. 即只需要判断 x + 7 β x+7\beta x+7β是否是 23 23 23的倍数即可
29
  1. 由于 29 = 10 ∗ 2 + 9 = 10 x + 9 29=10*2+9=10x+9 29=102+9=10x+9
  2. β = x + 1 = 2 + 1 = 3 \beta=x+1=2+1=3 β=x+1=2+1=3
  3. 即只需要判断 x + 3 β x+3\beta x+3β是否是 29 29 29的倍数即可
31
  1. 由于 31 = 10 ∗ 3 + 1 = 10 x + 1 31=10*3+1=10x+1 31=103+1=10x+1
  2. β = 9 x + 1 = 9 ∗ 3 + 1 = 28 \beta=9x+1=9*3+1=28 β=9x+1=93+1=28
  3. 即只需要判断 x + 28 β x+28\beta x+28β是否是 31 31 31的倍数即可. 等价于判断 x − 3 β x-3\beta x3β是否是31的倍数
  • 13
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值