一、题目介绍
【问题描述】密码学分为两类密码:对称密码和非对称密码。对称密码主要用于数据的加/解密,而非对称密码则主要用于认证、数字签名等场合。非对称密码在加密和解密时,是把加密的数据当作一个大的正整数来处理,这样就涉及到大整数的加、减、乘、除和指数运算等,同时,还需要对大整数进行输出。请采用相应的数据结构实现大整数的加、减、乘、除和指数运算,以及大整数的输入和输出。
【基本要求】
- 要求采用链表来实现大整数的存储和运算,不允许使用标准模板类的链表类(list)和函数。同时要求可以从键盘输入大整数,也可以文件输入大整数,大整数可以输出至显示器,也可以输出至文件。大整数的存储、运算和显示,可以同时支持二进制和十进制,但至少要支持十进制。大整数输出显示时,必须能清楚地表达出整数的位数。测试时,各种情况都需要测试,并附上测试截图;要求测试例子要比较详尽,各种极限情况也要考虑到,测试的输出信息要详细易懂,表明各个功能的执行正确;
- 要求大整数的长度可以不受限制,即大整数的十进制位数不受限制,可以为十几位的整数,也可以为500多位的整数,甚至更长;大整数的运算和显示时,只需要考虑正的大整数。如果可能的话,请以秒为单位显示每次大整数运算的时间;
- 要求采用类的设计思路,不允许出现类以外的函数定义,但允许友元函数。主函数中只能出现类的成员函数的调用,不允许出现对其它函数的调用。
- 要求采用多文件方式:.h文件存储类的声明,.cpp文件存储类的实现,主函数main存储在另外一个单独的cpp文件中。如果采用类模板,则类的声明和实现都放在.h文件中。
- 不强制要求采用类模板,也不要求采用可视化窗口;要求源程序中有相应注释;
- 自定义输入文件读取数据,并输出结果;
【实现提示】
- 大整数的加减运算可以分解为普通整数的运算来实现;而大整数的乘、除和指数运算,可以分解为大整数的加减运算。
- 大整数的加、减、乘、除和指数运算,一般是在求两大整数在取余操作下的加、减、乘、除和指数运算,即分别求 (a +b) mod n, (a - b) mod n, (a * b) mod n, (a / b) mod n 和(a ^ b) mod n。其中a ^ b 是求a的b次方,而n称之为模数。说明:取余操作(即mod操作)是计算相除之后所得的余数,不同于除法运算的是,取余操作得到的是余数,而不是除数。如7 mod 5 = 2。模数n的设定,可以为2m 或10m,m允许每次计算时从键盘输入。模数n的取值一般为2512(相当于十进制150位左右),21024(相当于十进制200~300位),22048(相当于十进制300~500位)。为了测试,模数n也可以为2256, 2128等值。
- 需要设计主要类有:链表类和大整数类。链表类用于处理链表的相关操作,包括缺省构造函数、拷贝构造函数、赋值函数、析构函数、链表的创建、插入、删除和显示等;而大整数类则用于处理大整数的各种运算和显示等。
【运行结果要求】要求能实现大整数的加、减、乘、除和指数运算,以及大整数的输入和输出,实验报告要求有详细的设计思路、功能测试截图。
【考核要求】要求程序能正常运行,全面完成题目要求。
【题目难度】 难,成绩等级高
【咨询教师】 如有问题,可直接咨询任课教师
二、设计思路
1、大整数加法运算
首先在短整数前面加0,将两个大整数对齐,按正常做加法的方式,从 前往后,对应的两位相加(还要加上int2进位),int1记录运算结果对10取模,int2记录进位。
2、大整数减法运算
调用Compare函数比较两个大整数,通过交换确保被减数一定不小于减数。 按照正常做减法的方式,从末尾开始先减,从后往前,如果不够则向前借1,直到借到位。借位的那个数需要减1,如果是0则变为9继续先前借位。每次计算都在xresult前插入计算结果,如果被减数的位数多余减数,那么在结束时直接将多余的数插入到结果的前面。
3、大整数乘法运算
按照正常做乘法的方法,从末位往前依次相乘,tmp记录计算结果(每次乘法开始时,需要在tmp末尾加上相应位数的0,用于对齐,方便最后结果的相加),int2记录进位,每次相乘得到的结果tmp与最后结果xresult相加。
4、大整数除法运算
按照正常做除法的方式,从9到0依次试商,与除数相乘第一次比被除数前i位小,然后做减法,求出余数,然后再重复上述操作。其中quotient表示商,residue表示余数。二进制除法从1到0依次试商,其他操作与十进制类似,这里不再赘述。
5、大整数指数运算
为提高计算速度,采用了特别的求指数的方法,详细的解释如下:
假设p的二进制位宽为n。那么p可以表示成如下形式:
表示第1位,它的值是0或者 1。
所以
进一步,
我们可以方便地求解下面这一系列的值:
该序列中从第二个数开始,每一个数都是前一个数的平方。平方可以使用乘法运算实现。
其中乘法*是我们已经实现的大整数乘法。
有了序列A[0],A[1]....A[n-1],我们可以方便地求解 aP的值。算法如下:
与上述相同,这里的乘法“也是我们已经实现的大整数乘法。
这里采用的方法是按照指数是二进制的方法,因此,如果是十进制的计算需要把指数转化为二进制,此方法对底数的进制没有特别要求。