老铁们,今天我们聊聊Flyte和LangChain的集成,这波操作可以说是相当丝滑。Flyte是一个开源的编排器,专为在生产环境中构建数据和机器学习管道而设计。它基于Kubernetes,具备强大的可扩展性和可重复性。接下来,我会为大家展示如何将FlyteCallback集成到你的Flyte任务中,以便高效地监控和追踪LangChain实验。
环境安装与设置
要开始动手操作,首先需要安装一些必要的工具和库:
- Flytekit库:
pip install flytekit
- Flytekit-Envd插件:
pip install flytekitplugins-envd
- LangChain库:
pip install langchain
- Docker:确保系统上已安装
Flyte任务
Flyte的核心概念是任务,在这里我们用Flyte任务来运行LangChain的实验。大伙记得,Flyte的官方入门指南有详细的本地安装Flyte和运行初始管道的步骤。如果有朋友还没安装,可以去看看。
首先,我们需要导入必要的依赖项来支持LangChain实验:
import os
from flytekit import ImageSpec, task
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.callbacks import FlyteCallbackHandler
from langchain.chains import LLMChain
from langchain_openai import ChatOpenAI
from langchain_core.prompts import PromptTemplate
from langchain_core.messages import HumanMessage
环境变量配置
要使用OpenAI API和Serp API,我们需要设置相应的环境变量:
# Set OpenAI API key
os.environ["OPENAI_API_KEY"] = "<your_openai_api_key>"
# Set Serp API key
os.environ["SERPAPI_API_KEY"] = "<your_serp_api_key>"
记得将<your_openai_api_key>
和<your_serp_api_key>
替换为你从OpenAI和Serp API获取