使用Weaviate和LangChain进行RAG任务的最佳实践

使用Weaviate和LangChain进行RAG任务的最佳实践

如果你正在寻找一种高效的方式来实现检索增强生成(RAG)任务,那么结合Weaviate和LangChain可能是一个理想的选择。在这篇文章中,我们将深入探讨如何设置和使用这两个技术栈,并提供实用的代码示例,帮助你快速上手。

引言

Weaviate是一个开源的向量搜索引擎,而LangChain是一个帮助开发者构建语言模型应用的工具。结合两者,我们可以创建一个强大的RAG方案。本篇文章的目的是帮助你了解如何配置环境,使用Weaviate和LangChain构建一个RAG应用。

主要内容

环境设置

在开始之前,你需要确保环境变量已经正确设置:

  1. OpenAI API Key

    export OPENAI_API_KEY=<your-openai-api-key>
    
  2. Weaviate的环境和API Key

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值