cuda编程 c_使用Go和C轻松进行CUDA编程

本文介绍如何使用Go和C语言结合CUDA进行编程,尤其是矩阵乘法操作。通过cgo调用C语言编写的CUDA内核函数,实现GPU加速计算。文章提供了详细的代码示例和编译指南。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

cuda编程 c

与其他语言相比,使用Go编程CUDA有点复杂。 尽管有一些出色的软件包,例如mumax ,但是文档很差,缺少示例并且很难使用。

CUDA用于C语言 ,所以最好的选择是使用Command cgo并使用您的Cuda内核调用外部函数。 这就是我在此示例中所做的事情,在该示例中,我使用CUDA将两个矩阵相乘。

如果您想了解有关CUDA编程的更多信息,请阅读我的文章

核心

我创建了一个简单的内核 ,该内核具有内核功能和可在外部调用的辅助功能。 请注意,我使用了extern C,因为这是cgo调用函数的方式:

# include <stdio.h>
# include <cuda.h>
 

__ global__ void vecmul ( float *A, float * B, float *C, int size)
 {
    // Row and Column indexes: 
    int row = blockIdx.y*blockDim.y+threadIdx.y;
    int col = blockIdx.x*blockDim.x+threadIdx.x;

    // Are they bellow the maximum?
    if (col < size && row < size) {
       float result = 0 ;
       for ( int ix= 0 ;ix<size;ix++) {
          result += A[row*size+ix]*B[ix*size+col];
       }
       C[row*size+col] = result;
    }
}

extern "C" {

    void maxmul ( float *A, float * B, float *C, int size)  {

        int total = size*size;

        // Allocate device memory:
        float * gpu_A;
        float * gpu_B;
        float * gpu_C;
        int msize = total * sizeof ( float );
        cudaMalloc(( void **)&gpu_A, msize);
        cudaMemcpy(gpu_A,A,msize,cudaMemcpyHostToDevice);
        cudaMalloc(( void **)&gpu_B, msize);
        cudaMemcpy(gpu_B,B,msize,cudaMemcpyHostToDevice);
        cudaMalloc(( void **)&gpu_C,msize);

        // Blocks & grids:
        dim3 blocks (size,size) ;
        dim3 grid ( 1 , 1 ) ;

        // Call the kernel:
        vecmul<<<grid,blocks>>>(gpu_A,gpu_B,gpu_C,size);

        // Get the result Matrix:
        cudaMemcpy(C,gpu_C,msize,cudaMemcpyDeviceToHost);

        //Free device matrices
        cudaFree(gpu_A);
        cudaFree(gpu_B);
        cudaFree(gpu_C);
    }

}

vecmul()函数是内核, maxmul()函数是助手。 它的功能是在GPU中分配内存,复制参数,调用内核并复制结果。 值通过引用传递。

转到代码

程序maxmul.go调用helper函数并显示结果:

package main

/*
void maxmul(float *A, float* B, float *C, int size);
#cgo LDFLAGS: -L. -L./ -lmaxmul
*/
import "C"

import "fmt"

func Maxmul (a []C.float, b []C.float, c []C.float, size int ) {
	C.maxmul(&a[ 0 ], &b[ 0 ], &c[ 0 ], C. int (size))
}

func main () {
	//in := []C.float{1.23, 4.56}
    //C.test(&in[0]) // C 1.230000 4.560000
	a := []C.float{ -1 , 2 , 4 , 0 , 5 , 3 , 6 , 2 , 1 }
	b := []C.float{ 3 , 0 , 2 , 3 , 4 , 5 , 4 , 7 , 2 }
	var c []C.float = make ([]C.float, 9 )
	Maxmul(a,b,c, 3 )
	fmt.Println(c)
}

在导入允许使用纯C代码(外部C)调用外部函数的C程序包之前,我传递了cgo的配置,指示函数C的原型, lib的路径及其名称。

我必须在Go代码中创建包装函数,以调用外部函数以使事情变得更容易。 它只是将引用传递给数组(第一个位置的地址)和数组大小(在这种情况下为3x3 = 9)。 在CUDA中,我们处理平面矩阵。

我使用C.float类型创建了包含我的数组的切片 (转换为向量)。 然后我调用了该函数。 请注意,我传递了每行(或列)的大小。

编译中

要编译C代码,请使用以下命令:

nvcc --ptxas-options=-v --compiler-options'-fPIC' -o libmaxmul.so --shared maxmul.cu

您需要安装CUDA和Nvidia驱动程序!

然后只需使用以下命令运行Go代码:

go run maxmul.go
...
[19 36 16 27 41 31 28 15 24]

这是矩阵相乘的结果!

完整的源代码在这里: https : //github.com/cleuton/golang-network/tree/master/english/cuda/nostress

翻译自: https://hackernoon.com/no-stress-cuda-programming-using-go-and-c-fy1y3agf

cuda编程 c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值