Educational Codeforces Round 70 (Rated for Div. 2)
注意到乘以一个\(2^k\)就相当于将二进制左移\(k\)位,然后贪心匹配就行了:找到\(t\)串最后一个\(1\)的位置,然后尽可能地去匹配\(s\)串后面的\(1\)。
Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 5;
int T;
char s[N], t[N];
int main() {
ios::sync_with_stdio(false); cin.tie(0);
cin >> T;
while(T--) {
cin >> s + 1 >> t + 1;
int n = strlen(s + 1), m = strlen(t + 1);
int p = 1;
for(int i = m; i >= 0; i--) {
if(t[i] == '1') break;
p++;
}
int ans = 0;
for(int i = n - p + 1; i >= 0; i--) {
if(s[i] == '1') break;
ans++;
}
cout << ans << '\n';
}
return 0;
}
\(bfs\)预处理出\(d[i][j][k][t]\),即用\([i,j]\)生成器,从数字\(k\)到\(t\)的最小步数即可。
Code
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = 10, M = 2e6 + 5;
int d[N][N][N][N];
bool vis[N];
char s[M];
void bfs(int x, int y, int z, int *d) {
memset(vis, 0, sizeof(vis));
queue <int> q; q.push(z);
d[z] = 0;
if(x > y) swap(x, y);
while(!q.empty()) {
int u = q.front(); q.pop();
int v1 = u + y, v2 = u + x;
if(v1 >= 10) v1 -= 10;
if(v2 >= 10) v2 -= 10;
if(!vis[v1]) {
d[v1] = d[u] + 1;
q.push(v1);
vis[v1] = 1;
}
if(!vis[v2]) {
d[v2] = d[u] + 1;
q.push(v2);
vis[v2] = 1;
}
}
}
void pre() {
//k->t
memset(d, -1, sizeof(d));
for(int i = 0; i < 10; i++) {
for(int j = 0; j < 10; j++) {
for(int k = 0; k < 10; k++)
bfs(i, j, k, d[i][j][k]);
}
}
// cout << d[0][0][0][0];
}
int main() {
ios::sync_with_stdio(false); cin.tie(0);
pre();
cin >> s + 1;
int n = strlen(s + 1);
for(int i = 0; i < 10; i++) {
for(int j = 0; j < 10; j++) {
int ans = 0;
for(int k = 2; k <= n; k++) {
if(d[i][j][s[k - 1] - '0'][s[k] - '0'] == -1) {
ans = -1; break;
}
ans += d[i][j][s[k - 1] - '0'][s[k] - '0'] - 1;
}
cout << ans << ' ';
}
cout << '\n';
}
return 0;
}
\(W,S\)和\(A,D\)是独立的,所以我们可以分开考虑。
现在只考虑\(S,W\)这种情况,模拟一下会发现我们可以将区间向下减少\(1\),当且仅当存在一个\(pos\),满足\(pos>maxpos_{up}\)且\(pos<minpos_{down}\),此时我们在\(pos\)处插入一个\(W\)即可;其它情况也类似。
写起来的话这样写有点麻烦,可以直接找满足条件的数量关系。详见代码吧:
Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e5 + 5;
int T;
char s[N];
int main() {
ios::sync_with_stdio(false); cin.tie(0);
cin >> T;
while(T--) {
cin >> s + 1;
int nowx = 0, nowy = 0;
int up = 0, down = 0, left = 0, right = 0;
int dup = 0, ddown = 0, dleft = 0, dright = 0;
int n = strlen(s + 1);
for(int i = 1; i <= n; i++) {
if(s[i] == 'D') nowy++;
if(s[i] == 'W') nowx--;
if(s[i] == 'A') nowy--;
if(s[i] == 'S') nowx++;
up = min(up, nowx);
down = max(down, nowx);
right = max(right, nowy);
left = min(left, nowy);
dup = max(dup, nowx - up);
ddown = max(ddown, down - nowx);
dleft = max(dleft, nowy - left);
dright = max(dright, right - nowy);
}
int x = down - up + 1, y = right - left + 1;
ll ans = 1ll * x * y;
if(dup != ddown) ans = min(ans, 1ll * max(x - 1, 2) * y);
if(dleft != dright) ans = min(ans, 1ll * x * max(y - 1, 2));
cout << ans << '\n';
}
return 0;
}
构造题。
先构造出1337,然后考虑在后面加若干个3,最后再加一个7。假设3的个数为\(x\),那么现在的答案就为\(C(x,2)+1\)。
我们选择尽量大的\(x\),满足\(C(x,2)+1\leq n_i\)。
最后还会差一点,补一些7在1337后面就行了。
可以证明这样是符合题目限制条件的,只是卡得可能有点紧。
Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int T;
int n;
int main() {
ios::sync_with_stdio(false); cin.tie(0);
cin >> T;
while(T--) {
cin >> n;
if(n == 1) {
cout << "1337" << '\n';
continue;
}
int x = 2;
while(1ll * (x + 1) * x <= 2 * n - 2) x++;
cout << "1337";
ll tot = 1ll * x * (x - 1) / 2 + 1;
n -= tot;
for(int i = 1; i <= n; i++) cout << '7';
for(int i = 3; i <= x; i++) cout << '3';
cout << '7' << '\n';
}
return 0;
}
因为拼合两个串较为麻烦,考虑对于串\(t\)枚举分界点\(i\),求出\(f[i],g[i]\),分别表示以\(i\)为终点、起点的串中包含了多少串,之后直接统计即可。
包含关系可以结合\(fail\)指针来解决。对于\(f,g\),正反两次\(AC\)自动机即可。
代码如下:
Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e5 + 5, MAX = 26;
string t;
string s[N];
int n;
queue <int> q;
struct ACAM{
int sz;
int ch[N][MAX];
int cnt[N], fail[N];
void init() {
sz = -1;
newnode();
}
int newnode() {
memset(ch[++sz], 0, sizeof(ch[sz]));
cnt[sz] = fail[sz] = 0;
return sz;
}
void insert(string s) {
int u = 0;
int l = s.length();
for(int i = 0; i < l; i++) {
int idx = s[i] - 'a';
if(!ch[u][idx]) ch[u][idx] = newnode();
u = ch[u][idx];
}
cnt[u]++;
}
void build() {
while(!q.empty()) q.pop();
for(int i = 0; i < 26; i++) {
if(ch[0][i]) q.push(ch[0][i]);
}
while(!q.empty()) {
int cur = q.front(); q.pop();
cnt[cur] += cnt[fail[cur]];
for(int i = 0; i < 26; i++) {
if(ch[cur][i]) {
fail[ch[cur][i]] = ch[fail[cur]][i];
q.push(ch[cur][i]);
} else {
ch[cur][i] = ch[fail[cur]][i];
}
}
}
}
void query(string s, int *f) {
int len = s.length();
int u = 0;
for(int i = 0; i < len; i++) {
int idx = s[i] - 'a';
u = ch[u][idx];
f[i] = cnt[u];
}
}
}ac;
int f[N], g[N];
int main() {
ios::sync_with_stdio(false); cin.tie(0);
cin >> t >> n;
int len = t.length();
ac.init();
for(int i = 1; i <= n; i++) {
cin >> s[i];
ac.insert(s[i]);
}
ac.build();
ac.query(t, f);
ac.init();
reverse(t.begin(), t.end());
for(int i = 1; i <= n; i++) {
reverse(s[i].begin(), s[i].end());
ac.insert(s[i]);
}
ac.build();
ac.query(t, g);
ll ans = 0;
for(int i = 0; i < len - 1; i++) {
ans += 1ll * f[i] * g[len - i - 2];
}
cout << ans;
return 0;
}