灰色关联度Matlab代码

本文介绍了一种数据预处理方法,通过读取原始数据并进行标准化处理,随后计算了各数据序列与参考数列之间的关联系数,用于评估数据间的关联度,并对结果进行了排序展示。


load x.txt %把原始数据存放在纯文本文件x.txt中,其中把数据的"替换替换成.
for i=1:40
x(i,:)=x(i,:)/x(i,1); %标准化数据
end
data=x;
n=size(data,2); %求矩阵的列数,即观测时刻的个数
ck=data(1,:); %提出参考数列
bj=data(2:end,:); %提出比较数列
m2=size(bj,1); %求比较数列的个数
    for j=1:m2
    t(j,:)=bj(j,:)-ck;
    end
mn=min(min(abs(t'))); %求最小差
mx=max(max(abs(t'))); %求最大差
rho=0.5; %分辨系数设置
ksi=(mn+rho*mx)./(abs(t)+rho*mx); %求关联系数
r=sum(ksi')/n %求关联度
[rs,rind]=sort(r,'descend') %对关联度进行排序

转载于:https://www.cnblogs.com/Xbingbing/p/3323520.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值